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Objectives: 

 To explain with examples the basic terminology of functions, relations, and sets. 

 To perform the operations associated with sets, functions, and relations. 

 To relate practical examples to the appropriate set, function, or relation model, 

and interpret the associated operations and terminology in context. 

 To describe the importance and limitations of predicate logic. 

 To relate the ideas of mathematical induction to recursion and recursively defined 

structures. 

 To use Graph Theory for solving problems 

 

UNIT‐I 

Mathematical Logic: Statements and notations, Connectives, Well formed 

formulas, Truth Tables, tautology, equivalence implication, Normal forms, 

Quantifiers, universal quantifiers.  

Predicates : Predicative logic, Free & Bound variables, Rules of inference, 

Consistency, proof of contradiction, Automatic Theorem Proving. 

 

UNIT‐II 

Relations: Properties of Binary Relations, equivalence, transitive closure, 

compatibility and partial ordering relations, Lattices, Hasse diagram. Functions: 

Inverse Function Composition of functions, recursive Functions, Lattice and its 

Properties, 

Algebraic structures: Algebraic systems Examples and general properties, 

Semigroups and monads, groups sub groups‟ homomorphism, Isomorphism. 

 

UNIT‐III 

Elementary Combinatorics: Basis of counting, Combinations & Permutations, 

with repetitions, Constrained repetitions, Binomial Coefficients, Binomial 

Multinomial theorems, the principles of Inclusion – Exclusion. Pigeon hole 

principles and its application. 

 

UNIT‐IV 
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Recurrence Relation: Generating Functions, Function of Sequences Calculating 

Coefficient of generating function, Recurrence relations, Solving recurrence 

relation by substitution and Generating funds. Characteristics roots solution of In 

homogeneous Recurrence Relation. 

 

UNIT‐V 

Graph Theory: Representation of Graph, DFS, BFS, Spanning Trees, planar 

Graphs. Graph Theory and Applications, Basic Concepts Isomorphism and Sub 

graphs, Multi graphs and Euler circuits, Hamiltonian graphs, Chromatic 

Numbers. 

 

TEXT BOOKS: 

1. Elements of DISCRETE MATHEMATICS‐ A computer Oriented Approach‐ C 

L Liu, D P Mohapatra. Third Edition, Tata McGraw Hill. 

 

2. Discrete Mathematics for Computer Scientists & Mathematicians, J.L. Mott, 

A. Kandel, T.P. Baker, PHI. 

 

REFERENCE BOOKS: 

1.Discrete Mathematics and its Applications, Kenneth H. Rosen, 

Fifth Edition.TMH. 2.Discrete Mathematical structures Theory and 

application‐ Malik & Sen, Cengage. 3.Discrete Mathematics with 

Applications, Thomas Koshy, Elsevier. 

4.Logic and Discrete Mathematics, Grass Man & Trembley, Pearson Education. 

 

Outcomes: 

• Ability to Illustrate by examples the basic terminology of functions, relations, 

and sets and demonstrate knowledge of their associated operations. 

• Ability to Demonstrate in practical applications the use of basic counting 

principles of permutations, combinations, inclusion/exclusion principle and the 

pigeonhole methodology. 

• Ability to represent and Apply Graph theory in solving computer science 

problems. 
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INTRODUCTION 

Unit – I 

Mathematical Logic 

Proposition: A proposition or statement is a declarative sentence 

which is either true or false but not both. The truth or falsity of a 

proposition is called its truth-value. 

These two values ‗true„ and ‗false„ are denoted by the symbols T and F 

respectively. Sometimes these are also denoted by the symbols 1 and 0 respectively. 

Example 1: Consider the following sentences: 

1. Delhi is the capital of India. 

2. Kolkata is a country. 

3. 5 is a prime 

number. 4. 2 + 3 = 

4. 

These are propositions (or statements) because they are either 

true of false. Next consider the following sentences: 

5. How beautiful are you? 

6. Wish you a happy new year 

7. x + y = z 

8. Take one book. 

These are not propositions as they are not declarative in nature, that is, they 

do not declare a definite truth value T or F. 

Propositional Calculus is also known as statement calculus. It is the 

branch of mathematics that is used to describe a logical system or structure. 

A logical system consists of (1) a universe of propositions, (2) truth tables 

(as axioms) for the logical operators and (3) definitions that explain 

equivalence and implication of propositions. 

 
Connectives 
The words or phrases or symbols which are used to make a proposition by 

two or more propositions are called logical connectives or simply 

connectives. There are five basic connectives called negation, conjunction, 

disjunction, conditional and biconditional. 
Negation 

The negation of a statement is generally formed by writing the word 

‗not„ at a proper place in the statement (proposition) or by prefixing the 

statement with the phrase 

‗It is not the case that„. If p denotes a statement then the negation of p is 

written as p and read as ‗not p„. If the truth value of p is T then the truth 

value of p is F. Also if the truth value of p is F then the truth value of p is T. 
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Table 1. Truth table for negation 
p ¬p 

T

 

F 

F 

T 
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Example 2: Consider the statement p: Kolkata is a city. Then ¬p: Kolkata is not a 

city. 

Although the two statements ‗Kolkata is not a city„ and ‗It is not the case that 

Kolkata is a city„ are not identical, we have translated both of them by p. The reason 

is that both these statements have the same meaning. 

 
Conjunction 
The conjunction of two statements (or propositions) p and q is the statement p 

∧ q which is read as ‗p and q„. The statement p ∧ q has the truth value T whenever 
both p and q have the truth value T. Otherwise it has truth value F. 

 

Table 2. Truth table for conjunction 

 
p q p ∧ q 

 
T 

 
T 

 
T 

T F F 
F T F 
F F F 

 

Example 3: Consider the following statements 

p : It is raining today. 

q : There are 10 chairs in the room. 
Then p ∧ q : It is raining today and there are 10 chairs in the room. 

Note: Usually, in our everyday language the conjunction ‗and„ is used between two 

statements which have some kind of relation. Thus a statement ‗It is raining today 

and 1 + 1 = 2„ sounds odd, but in logic it is a perfectly acceptable statement formed 

from the statements ‗It is raining today„ and ‗1 + 1 = 2„. 

Example 4: Translate the following statement: 

‗Jack and Jill went up the hill„ into symbolic form using conjunction. 

Solution: Let p : Jack went up the hill, q : Jill went up the hill. 

Then the given statement can be written in symbolic form as p ∧ q. 

 
Disjunction 

The disjunction of two statements p and q is the statement p ∨ q which is read 

as ‗p or q„. The statement p ∨ q has the truth value F only when both p and q have 
the truth value F. Otherwise it has truth value T. 

 

Table 3: Truth table for disjunction 

 
p q p 

∨ 
q 

T T T 
T F T 
F T T 
F F F 
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Example 5: Consider the following statements p : I shall go to the game. 

 

q : I shall watch the game on television. 

Then p ∨ q : I shall go to the game or watch the game on television. 

 
Conditional proposition 

If p and q are any two statements (or propositions) then the statement p → q which 
is read as, 

‗If p, then q„ is called a conditional statement (or proposition) or implication and 

the connective is the conditional connective. 

 

The conditional is defined by the following table: 

 

Table 4. Truth table for conditional 

 
p q p 

→ 
q 

T T T 
T F F 
F T T 
F F T 

 

In this conditional statement, p is called the hypothesis or premise or 

antecedent and q is called the consequence or conclusion. 

 

To understand better, this connective can be looked as a conditional promise. If 

the promise is violated (broken), the conditional (implication) is false. Otherwise it is 

true. For this reason, the only circumstances under which the conditional p → q is 

false is when p is true and q is false. 

 

Example 6: Translate the following statement: 

 

‘The crop will be destroyed if there is a flood’ into symbolic form using 

conditional connective. 

 

Solution: Let c : the crop will be destroyed; f : there 

is a flood. Let us rewrite the given statement as 

‗If there is a flood, then the crop will be destroyed„. So, the symbolic form of 

the given statement is f → c. 

 

Example 7: Let p and q denote the 

statements: p : You drive over 70 km 

per hour. 

q : You get a speeding ticket. 
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Write the following statements into symbolic forms. 

 

(i) You will get a speeding ticket if you drive over 70 km per hour. 

 

(ii) Driving over 70 km per hour is sufficient for getting a speeding ticket. 

 

(iii) If you do not drive over 70 km per hour then you will not get a speeding ticket. 

(iv) Whenever you get a speeding ticket, you drive over 70 km per hour. 

Solution: (i) p → q (ii) p → q (iii) p → q (iv) q → p. 

 

Notes: 1. In ordinary language, it is customary to assume some kind of 

relationship between the antecedent and the consequent in using the conditional. But 

in logic, the antecedent and the 
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consequent in a conditional statement are not required to refer to the same subject 

matter. For example, the statement ‗If I get sufficient money then I shall purchase a 

high-speed computer„ sounds reasonable. On the other hand, a statement such as ‗If I 

purchase a computer then this pen is red„ does not make sense in our conventional 

language. But according to the definition of conditional, this proposition is perfectly 

acceptable and has a truth-value which depends on the truth-values of the component 

statements. 

 

2. Some of the alternative terminologies used to express p → q (if p, 

then q) are the following: (i) p implies q 

 

(ii) p only if q (‗If p, then q„ formulation emphasizes the antecedent, whereas 

‗p only if q„ formulation emphasizes the consequent. The difference is only 

stylistic.) 

 

(iii) q if p, or q when p. 

 

(iv) q follows from p, or q whenever p. 

 

(v) p is sufficient for q, or a sufficient condition for q is p. (vi) q is necessary for 

p, or a necessary condition for p is q. (vii) q is consequence of p. 
Converse, Inverse and Contrapositive 

If P → Q is a conditional 

statement, then (1). Q → P is 

called its converse 

(2). ¬P → ¬Q is called its inverse 

(3). ¬Q → ¬P is called its 

contrapositive. Truth table for Q → P 

(converse of P → Q) 

P Q Q → 
P 

T T T 

T F T 

F T F 

F F T 

Truth table for ¬P → ¬Q (inverse of P → Q) 

P Q ¬
P 

¬
Q 

¬P → 
¬Q 

T T F F T 

T F F T T 

F T T F F 

F F T T T 

Truth table for ¬Q → ¬P (contrapositive of P → Q) 
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P Q ¬
Q 

¬
P 

¬Q 
→ 

¬P 

T T F F T 

T F T F F 

F T F T T 

F F T T T 
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Example: Consider the statement 

P : It rains. 

Q: The crop will 

grow. The implication P → 

Q states that 

R: If it rains then the crop will grow. 

The converse of the implication P → Q, namely Q → P 

sates that S: If the crop will grow then there has 

been rain. 

The inverse of the implication P → Q, namely ¬P → ¬Q sates that 

U: If it does not rain then the crop will not grow. 

The contraposition of the implication P → Q, namely ¬Q → ¬P 

states that T : If the crop do not grow then there has been no 

rain. 

 

Example 9: Construct the truth table for (p → q) ∧ (q →p) 
p q p → 

q 
q → 

p 
(p → q) ∧ (q → p) 

     
T T T T T 
T F F T F 
F T T F F 
F F T T T 

 
Biconditional proposition 
If p and q are any two statements (propositions), then the statement p↔ q which is 

read as ‗p if and only if q„ and abbreviated as ‗p iff q„ is called a biconditional 

statement and the connective is the biconditional connective. 
The truth table of p↔q is given by the following table: 

Table 6. Truth table for biconditional 
p q p↔q 
T T T 
T F F 
F T F 
F F T 

 

 

It may be noted that p q is true only when both p and q are true or when both p 

and q are false. Observe that p q is true when both the conditionals p → q and q → p 

are true, i.e., the truth- values of (p → q) ∧ (q → p), given in Ex. 9, are identical to 

the truth-values of p q defined here. 

 

Note: The notation p ↔ q is also used instead of p↔q. 

 

TAUTOLOGY AND CONTRADICTION 

 

Tautology: A statement formula which is true regardless of the truth values of 
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the statements which replace the variables in it is called a universally valid 

formula or a logical truth or a tautology. 

 

Contradiction: A statement formula which is false regardless of the truth 

values of the statements which replace the variables in it is said to be a 

contradiction. 

Contingency: A statement formula which is neither a tautology nor a 

contradiction is known as a contingency. 
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Substitution Instance 

A formula A is called a substitution instance of another formula B if A can be 

obtained form B by substituting formulas for some variables of B, with the 

condition that the same formula is substituted for the same variable each time 

it occurs. 

Example: Let B : P → (J ∧ P ). 

Substitute R↔S for P in B, we get 

(i): (R ↔ S) → (J ∧ (R ↔ S)) 

Then A is a substitution instance of B. 

Note that (R ↔ S) → (J ∧P) is not a substitution instance of B because 

the variables P in J ∧ P was not replaced by R ↔ S. 

Equivalence of Formulas 

Two formulas A and B are said to equivalent to each other if and only 

if A↔ B is a tautology. 

If A↔B is a tautology, we write A ⇔ B which is read as A is equivalent to B. 

Note : 1. ⇔ is only symbol, but not connective. 

2. A ↔ B is a tautology if and only if truth tables of A and B are the same. 

3. Equivalence relation is symmetric and transitive. 

 

Method I. Truth Table Method: One method to determine whether any 

two statement formulas are equivalent is to construct their truth tables. 

Example: Prove P ∨ Q ⇔ ¬(¬P ∧ 

¬Q). Solution: 

 

 

 

 

 

 

As P ∨ Q ¬(¬P ∧ ¬Q) is a tautology, then P ∨ Q ⇔ ¬(¬P 

∧ ¬Q). Example: Prove (P → Q) ⇔ (¬P ∨ Q). 

Solution: 

 

P Q P → 
Q 

¬P ¬P ∨ 

Q 

(P → Q) (¬P ∨ 

Q) 

T T T F T T 

T F F F F T 

F T T T T T 

P Q P ∨  Q ¬P ¬Q ¬P ∧  ¬Q ¬(¬P ∧  ¬Q) (P ∨  Q) ⇔ ¬(¬P ∧  ¬Q) 

T T T F F F T T 

T F T F T F T T 

F T T T F F T T 

F F F T T T F T 
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F F T T T T 

 

As (P → Q) (¬P ∨ Q) is a tautology then (P → Q) ⇔ (¬P ∨ Q). 
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Equivalence Formulas: 

1. Idempotent laws: 

(a) P ∨ P ⇔ P (b) P ∧ P ⇔ P 

2. Associative laws: 

 

(a) (P ∨ Q) ∨ R ⇔ P ∨ (Q ∨ R) (b) (P ∧ Q) ∧ R ⇔ P ∧ (Q ∧ R) 

3. Commutative laws: 

 

(a) P ∨ Q ⇔ Q ∨ P (b) P ∧ Q ⇔ Q ∧ P 

4. Distributive laws: 

P ∨ (Q ∧ R) ⇔ (P ∨ Q) ∧ (P ∨ R) P ∧ (Q ∨ R) ⇔ (P ∧ Q) ∨ (P ∧ R) 

5. Identity laws: 

(a) (i) P ∨ F ⇔ P (ii) P ∨ T ⇔ T 

(b) (i) P ∧ T ⇔ P (ii) P ∧ F ⇔ F 

6. Component laws: 

 

(a) (i) P ∨ ¬P ⇔ T (ii) P ∧ ¬P ⇔ F . 

(b) (i) ¬¬P ⇔ P 
7. Absorption laws: 

(ii) ¬T ⇔ F , ¬F ⇔ 

T 

 

 

(a) P ∨ (P ∧ Q) ⇔ P (b) P ∧ (P ∨ Q) ⇔ P 

8. Demorgan„s laws: 

 

(a) ¬(P ∨ Q) ⇔ ¬P ∧ ¬Q (b) ¬(P ∧ Q) ⇔ ¬P ∨ ¬Q 

Method II. Replacement Process: Consider a formula A : P → (Q → R). The 

formula Q → R is a part of the formula A. If we replace Q → R by an equivalent 

formula ¬Q∨R in A, we get another 

formula B : P → (¬Q∨R). One can easily verify that the formulas A and B are 

equivalent to each other. This process of obtaining B from A as the replacement 

process. 

 

Example: Prove that P → (Q → R) ⇔ P → (¬Q ∨ R) ⇔ (P ∧ Q) → 

R.(May. 2010) Solution: P → (Q → R) ⇔ P → (¬Q ∨ R) [∵ Q → 

R ⇔ ¬Q ∨ R] 

⇔ ¬P ∨ (¬Q ∨ R) [∵ P → Q ⇔ ¬P ∨ Q] 

⇔ (¬P ∨ ¬Q) ∨ R [by Associative laws] 

⇔ ¬(P ∧ Q) ∨ R [by De Morgan„s laws] 
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⇔ (P ∧ Q) → R[∵ P → Q ⇔ ¬P ∨ Q]. 

Example: Prove that (P → Q) ∧ (R → Q) ⇔ (P ∨ R) 

→ Q. Solution: (P → Q) ∧ (R → Q) ⇔ (¬P ∨ Q) ∧ (¬R 

∨ Q) 

⇔ (¬P ∧ ¬R) ∨ Q ⇔ 

¬(P ∨ R) ∨ Q ⇔ P ∨ 

R → Q 
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Example: Prove that P → (Q → P ) ⇔ ¬P → 

(P → Q). Solution: P→ (Q → P ) ⇔ ¬P ∨ 

(Q → P ) 

⇔ ¬P ∨ (¬Q ∨ P ) 

⇔ (¬P ∨ P ) ∨ ¬Q 

⇔ T ∨ ¬Q 

⇔ T 

and  

¬P → (P → Q) ⇔ ¬(¬P ) ∨ (P 

→ Q) 

⇔ P ∨ (¬P ∨ Q) ⇔ 

(P ∨ ¬P ) ∨ Q ⇔ T 

∨ Q 

⇔ T 

So, P → (Q → P ) ⇔ ¬P → (P → Q). 

***Example: Prove that (¬P ∧ (¬Q ∧ R)) ∨ (Q ∧ R) ∨ (P ∧ R) ⇔ R. (Nov. 

2009) Solution: 

(¬P ∧ (¬Q ∧ R)) ∨ (Q ∧ R) ∨ (P ∧ R) 

⇔ ((¬P ∧ ¬Q) ∧ R) ∨ ((Q ∨ P ) ∧ R) [Associative and Distributive laws] 

⇔ (¬(P ∨ Q) ∧ R) ∨ ((Q ∨ P ) ∧ R) [De Morgan„s laws] 

⇔ (¬(P ∨ Q) ∨ (P ∨ Q)) ∧ R [Distributive laws] 

⇔ T ∧ R [∵ ¬P ∨ P ⇔ T ] 

⇔ R 

**Example: Show ((P ∨ Q) ∧ ¬(¬P ∧ (¬Q ∨ ¬R))) ∨ (¬P ∧ ¬Q) ∨ (¬P ∧ ¬R) is 

tautology. Solution: By De Morgan„s laws, we have 

¬P ∧ ¬Q ⇔ ¬(P ∨ Q) 

¬P ∨ ¬R ⇔ ¬(P ∧ R) 

Therefo

re 

 

 

 

Also 

 

(¬P ∧ ¬Q) ∨ (¬P ∧ ¬R) ⇔ ¬(P ∨ Q) ∨ ¬(P 

∧ R) 

⇔ ¬((P ∨ Q) ∧ (P ∨ R)) 

 

¬(¬P ∧ (¬Q ∨ ¬R)) ⇔ ¬(¬P ∧ ¬(Q ∧ 

R)) 

⇔ P ∨ (Q ∧ R) 
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⇔ (P ∨ Q) ∧ (P ∨ R) 

Hence ((P ∨ Q) ∧ ¬(¬P ∧ (¬Q ∨ ¬R))) ⇔ (P ∨ Q) ∧ (P ∨ Q) ∧ (P ∨ R) 

⇔ (P ∨ Q) ∧ (P ∨ 

R) Thus ((P ∨ Q) ∧ ¬(¬P ∧ (¬Q ∨ ¬R))) ∨ (¬P ∧ ¬Q) ∨ 

(¬P ∧ ¬R) 
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⇔ [(P ∨ Q) ∧ (P ∨ R)] ∨ ¬[(P ∨ Q) ∧ (P ∨ R)] 

⇔ T 

Hence the given formula is a tautology. 

Example: Show that (P ∧ Q) → (P ∨ Q) is a tautology. (Nov. 

2009) Solution: (P ∧ Q) → (P ∨ Q) ⇔ ¬(P ∧ Q) ∨ (P ∨ Q) [∵ P → Q ⇔ ¬P ∨ Q] 

⇔ (¬P ∨ ¬Q) ∨ (P ∨ Q) [by De Morgan„s laws] 

⇔ (¬P ∨ P ) ∨ (¬Q ∨ Q) [by Associative laws and 

commutative laws] 

⇔ (T ∨ T )[by negation laws] 

⇔ T 

Hence, the result. 

 

Example: Write the negation of the following statements. 

(a). Jan will take a job in industry or go to 

graduate school. (b). James will bicycle or run 

tomorrow. 

(c). If the processor is fast then the printer is slow. 

Solution: (a). Let P : Jan will take a job in industry. 

Q: Jan will go to graduate school. 

The given statement can be written in the symbolic 

as P ∨ Q. The negation of P ∨ Q is given by ¬(P ∨ 

Q). 

¬(P ∨ Q) ⇔ ¬P ∧ ¬Q. 

¬P ∧ ¬Q: Jan will not take a job in industry and he will not go to 

graduate school. (b). Let P : James will bicycle. 
Q: James will run tomorrow. 

The given statement can be written in the symbolic 

as P ∨ Q. The negation of P ∨ Q is given by ¬(P ∨ 

Q). 

¬(P ∨ Q) ⇔ ¬P ∧ ¬Q. 

¬P ∧ ¬Q: James will not bicycle and he will not run 

tomorrow. (c). Let P : The processor is fast. 
Q: The printer is slow. 

The given statement can be written in the symbolic as P → Q. 

 

The negation of P → Q is given by ¬(P → Q). 

¬(P → Q) ⇔ ¬(¬P ∨ Q) ⇔ P ∧ ¬Q. 
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P ∧ ¬Q: The processor is fast and the printer is fast. 

Example: Use Demorgans laws to write the negation of each 

statement. (a). I want a car and worth a cycle. 

(b). My cat stays outside or it makes a 

mess. (c). I„ve fallen and I can„t get 

up. 

(d). You study or you don„t get a good grade. 

Solution: (a). I don„t want a car or not worth a cycle. 

(b). My cat not stays outside and it does not make a mess. 
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(c). I have not fallen or I can get up. 

(d). You can not study and you get a good 

grade. Exercises: 1. Write the negation of the 

following statements. (a). If it is raining, then the 

game is canceled. 

(b). If he studies then he will pass the examination. 

Are (p → q) → r and p → (q → r) logically equivalent? Justify your answer 

by using the rules of logic to simply both expressions and also by using truth 

tables. Solution: (p → q) → r and p → (q → r) are not logically equivalent 

because 

Method I: Consider 

 

 

 

 

 

and 

(p → q) → r ⇔ (¬p ∨ q) → r 

⇔ ¬(¬p ∨ q) ∨ r ⇔ 

(p ∧ ¬q) ∨ r 

⇔ (p ∧ r) ∨ (¬q ∧ r) 

 

p → (q → r) ⇔ p → (¬q ∨ r) 

⇔ ¬p ∨ (¬q ∨ r) ⇔ 

¬p ∨ ¬q ∨ r. 

 

Method II: (Truth Table Method) 

p q r p → 
q 

(p → q) → 
r 

q → 
r 

p → (q → 
r) 

T T T T  T T T 

T T F T  F F F 

T F T F  T T T 

T F F F  T T T 

F T T T  T T T 

F T F T  F F T 

F F T T  T T T 

F F F T  F T T 

 

Here the truth values (columns) of (p → q) → r and p → (q → r) are not identical. 

 

Consider the statement: ‖If you study hard, then you will excel‖. Write its 

converse, contra positive and logical negation in logic. 

 

Duality Law 

Two formulas A and A∗ are said to be duals of each other if either one can be 



MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE - MRCET Page 22   

obtained from the other by replacing ∧ by ∨ and ∨ by ∧. The connectives ∨ and ∧ are 

called duals of each other. If the 

formula A contains the special variable T or F , then A∗, its dual is obtained by replacing T 
by F and 

F by T in addition to the above mentioned 

interchanges. Example: Write the dual of the 

following formulas: 
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(i). (P ∨ Q) ∧ R (ii). (P ∧ Q) ∨ T (iii). (P ∧ Q) ∨ (P ∨ ¬(Q ∧ ¬S)) 

Solution: The duals of the formulas may be written as 

(i). (P ∧ Q) ∨ R (ii). (P ∨ Q) ∧ F (iii). (P ∨ Q) ∧ (P ∧ ¬(Q ∨ ¬S)) 

Result 1: The negation of the formula is equivalent to its dual in which 

every variable is replaced by its negation. 

We can prove 

¬A(P1, P2, ..., Pn) ⇔ A∗(¬P1, ¬P2, ..., ¬Pn) 

Example: Prove that (a). ¬(P ∧ Q) → (¬P ∨ (¬P ∨ Q)) ⇔ 

(¬P ∨ Q) (b). (P ∨ Q) ∧ (¬P ∧ (¬P ∧ Q)) ⇔ (¬P ∧ 

Q) 

Solution: (a).¬(P ∧ Q) → (¬P ∨ (¬P ∨ Q)) ⇔ (P ∧ Q) ∨ (¬P ∨ (¬P ∨ Q)) [∵ P → Q ⇔ 

¬P ∨ Q] 

⇔ (P ∧ Q) ∨ (¬P ∨ Q) 

⇔ (P ∧ Q) ∨ ¬P ∨ Q 

⇔ ((P∧ Q) ∨ ¬P )) ∨ Q 

⇔ ((P ∨ ¬P ) ∧ (Q ∨ ¬P )) ∨ Q 

⇔ (T ∧ (Q ∨ ¬P )) ∨ Q 

⇔ (Q ∨ ¬P ) ∨ Q 

⇔ Q ∨ ¬P 

⇔ ¬P ∨ Q 

(b). From (a) 

Writing the 

dual 

 

(P ∧ Q) ∨ (¬P ∨ (¬P ∨ Q)) ⇔ ¬P ∨ 

Q 

 

(P ∨ Q) ∧ (¬P ∧ (¬P ∧ Q)) ⇔ (¬P 

∧ Q) 

 

Tautological Implications 
A statement formula A is said to tautologically imply a statement B if and only if A 
→ B 
is a tautology. 

In this case we write A ⇒ B, which is read as „A implies B„. 

Note: ⇒ is not a connective, A ⇒ B is not a statement formula. 

A ⇒ B states that A → B is tautology. 

Clearly A ⇒ B guarantees that B has a truth value T whenever A has the truth value T . 
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One can determine whether A ⇒ B by constructing the truth tables of A and B in the 

same manner as was done in the determination of A ⇔ B. Example: Prove that (P → 

Q) ⇒ (¬Q → ¬P ). 
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Solutio

n: 

 

 

 

P Q ¬P ¬
Q 

P → 
Q 

¬Q → 
¬P 

(P → Q) → (¬Q → 
¬P ) 

T T F F T T T 

T F F T F F T 

F T T F T T T 

F F T T T T T 

 

Since all the entries in the last column are true, (P → Q) → (¬Q 

→ ¬P ) is a tautology. 

Hence (P → Q) ⇒ (¬Q → ¬P ). 

In order to show any of the given implications, it is sufficient to show that 
an assignment of the truth value T to the antecedent of the corresponding 
condi- 

 

tional leads to the truth value T for the consequent. This procedure 

guarantees that the conditional becomes tautology, thereby proving the 

implication. 

 

Example: Prove that ¬Q ∧ (P → Q) ⇒ ¬P . 

Solution: Assume that the antecedent ¬Q ∧ (P → Q) has the truth value T , then both 

¬Q and P → Q have the truth value T , which means that Q has the truth value F , P 

→ Q has the truth value T . Hence P must have the truth value F . 
Therefore the consequent ¬P must have the truth value T. 

¬Q ∧ (P → Q) ⇒ ¬P . 

Another method to show A ⇒ B is to assume that the consequent B has the truth value 

F and then show that this assumption leads to A having the truth value F . Then A → 

B must have the truth value T . 

Example: Show that ¬(P → Q) ⇒ P . 

Solution: Assume that P has the truth value F . When P has F , P → Q has T , then ¬(P 

→ Q) has F 

. Hence ¬(P → Q) → P has T . 

 

Other Connectives 

¬(P → Q) ⇒ P 

 

We introduce the connectives NAND, NOR which have useful applications in 

the design of computers. 

NAND: The word NAND is a combination of „NOT„ and „AND„ where „NOT„ 

stands for negation and „AND„ for the conjunction. It is denoted by the symbol ↑. 
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If P and Q are two formulas then 

P ↑ Q ⇔ ¬(P ∧ 

Q) The connective ↑ has the following 

equivalence: 

P ↑ P ⇔ ¬(P ∧ P ) ⇔ ¬P ∨ ¬P ⇔ ¬P . 
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(P ↑ Q) ↑ (P ↑ Q) ⇔ ¬(P ↑ Q) ⇔ ¬(¬(P ∧ Q)) ⇔ 

P ∧ Q. (P ↑ P ) ↑ (Q ↑ Q) ⇔ ¬P ↑ ¬Q ⇔ ¬(¬P ∧ 

¬Q) ⇔ P ∨ Q. 

NAND is Commutative: Let P and Q be any two statement 

formulas. 

(P ↑ Q) ⇔ ¬(P ∧ Q) 

⇔ ¬(Q ∧ P ) ⇔ 

(Q ↑ P ) 

∴ NAND is commutative. 

NAND is not Associative: Let P , Q and R be any three 

statement formulas. Consider ↑ (Q ↑ R) ⇔ ¬(P ∧ (Q ↑ R)) ⇔ 

¬(P ∧ (¬(Q ∧ R))) 

⇔ ¬P ∨ (Q ∧ 

R)) (P ↑ Q) ↑ R ⇔ ¬(P ∧ 

Q) ↑ R 

⇔ ¬(¬(P ∧ Q) ∧ R) ⇔ 

(P ∧ Q) ∨ ¬R 

Therefore the connective ↑ is not associative. 

NOR: The word NOR is a combination of „NOT„ and „OR„ where „NOT„ stands for 

negation and 

‗OR„ for the disjunction. It is denoted by the symbol ↓. 

If P and Q are two formulas then 

P ↓ Q ⇔ ¬(P ∨ 

Q) The connective ↓ has the following 

equivalence: 

P ↓ P ⇔ ¬(P ∨ P ) ⇔ ¬P ∧ ¬P ⇔ ¬P . 

(P ↓ Q) ↓ (P ↓ Q) ⇔ ¬(P ↓ Q) ⇔ ¬(¬(P ∨ Q)) 

⇔ P ∨ Q. (P ↓ P ) ↓ (Q ↓ Q) ⇔ ¬P ↓ ¬Q ⇔ 

¬(¬P ∨ ¬Q) ⇔ P ∧ Q. 

NOR is Commutative: Let P and Q be any two statement formulas. 

(P ↓ Q) ⇔ ¬(P ∨ Q) 

⇔ ¬(Q ∨ P ) ⇔ 

(Q ↓ P ) 

∴ NOR is commutative. 

NOR is not Associative: Let P , Q and R be any three statement formulas. Consider 

P↓ (Q ↓ R) ⇔ ¬(P ∨ (Q ↓ R)) 
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⇔ ¬(P ∨ (¬(Q ∨ R))) 

⇔ ¬P ∧ (Q ∨ 

R) (P ↓ Q) ↓ R ⇔ ¬(P ∨ 

Q) ↓ R 

⇔ ¬(¬(P ∨ Q) ∨ R) ⇔ 

(P ∨ Q) ∧ ¬R 

Therefore the connective ↓ is not associative. 

 

Evidently, P ↑ Q and P ↓ Q are duals of each other. 

Since 
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¬(P ∧ Q) ⇔ ¬P ∨ ¬Q 

¬(P ∨ Q) ⇔ ¬P ∧ ¬Q. 

Example: Express P ↓ Q interms of 

↑ only. Solution: 

↓ Q ⇔ ¬(P ∨ Q) 

⇔ (P ∨ Q) ↑ (P ∨ Q) 

⇔ [(P ↑ P ) ↑ (Q ↑ Q)] ↑ [(P ↑ P ) ↑ (Q ↑ Q)] 

Example: Express P ↑ Q interms of ↓ only. 

(May-2012) Solution: ↑ Q ⇔ ¬(P ∧ Q) 

⇔ (P ∧ Q) ↓ (P ∧ Q) 

⇔ [(P ↓ P ) ↓ (Q ↓ Q)] ↓ [(P ↓ P ) ↓ (Q ↓ Q)] 

Truth Tables 

Example: Show that (A ⊕ B) ∨ (A ↓ B) ⇔ (A ↑ B). 

(May-2012) Solution: We prove this by constructing 

truth table. 

A B A ⊕ 

B 
A ↓ 

B 

(A ⊕ B) ∨ (A ↓ 

B) 
A ↑ 

B 

T T F F F F 

T F T F T T 

F T T F T T 

F F F T T T 

As columns (A ⊕ B) ∨ (A ↓ B) and (A ↑ B) are identical. 

∴ (A ⊕ B) ∨ (A ↓ B) ⇔ (A ↑ B). 

 

Normal Forms 

If a given statement formula A(p1, p2, ...pn) involves n atomic variables, we 

have 2
n 

possible combinations of truth values of statements replacing the 
variables. 

The formula A is a tautology  if A has the truth value T for all possible 

assignments of the 

truth values to the variables p1, p2, ...pn and A is called a contradiction if A has 

the truth value F for all possible assignments of the truth values of the n 
variables. A is said to be satis 

able if A has the truth value T for atleast one combination of truth values assigned 

to p1, p2, 

...pn. 
The problem of determining whether a given statement formula is a 

Tautology, or a Contradiction is called a decision problem. 
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The construction of truth table involves a finite number of steps, but the 

construc-tion may not be practical. We therefore reduce the given statement 

formula to normal form and find whether a given statement formula is a 

Tautology or Contradiction or atleast satisfiable. 

It will be convenient to use the word ‖product‖ in place of ‖conjunction‖ and 

‖sum‖  inplace of ‖disjunction‖ in our current discussion. 
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A product of the variables and their negations in a formula is called an 

elementary product. Similarly, a sum of the variables and their negations in a 

formula is called an elementary sum. 

Let P and Q be any atomic variables. Then P , ¬P ∧Q, ¬Q∧P  ¬P , P  ¬P , and 

Q ∧ ¬P 

are some examples of elementary products. On the other hand, P , ¬P ∨ Q, ¬Q ∨ P 

∨ ¬P , P 

∨ ¬P , and Q ∨ ¬P are some examples of elementary sums. 

Any part of an elementary sum or product which is itself an elementary sum 

or product is called a factor of the original elementary sum or product. Thus 

¬Q,∧ ¬P , and ¬Q ∧ P are some of the factors of ¬Q ∧ P ∧ ¬P . 

Disjunctive Normal Form (DNF) 

 

A formula which is equivalent to a given formula and which consists of a sum 

of elementary products is called a disjunctive normal form of the given 

formula. 

 

Example: Obtain disjunctive normal forms of 

(a) P ∧ (P → Q); (b) ¬(P ∨ Q) ↔ (P ∧ Q). 

Solution: (a) We have 

 

 

(b) ¬(P ∨ Q) ↔(P ∧ 

Q) 

P ∧ (P → Q) ⇔ P ∧ (¬P ∨ Q) 

⇔ (P ∧ ¬P ) ∨ (P ∧ Q) 

⇔ (¬(P ∨ Q) ∧ (P ∧ Q)) ∨ ((P ∨ Q) ∧ ¬(P ∧ Q)) [using 

R↔ S ⇔ (R ∧ S) ∨ (¬R ∧ ¬S) 

⇔ ((¬P ∧ ¬Q) ∧ (P ∧ Q)) ∨ ((P ∨ Q) ∧ (¬P ∨ ¬Q)) 

⇔ (¬P ∧ ¬Q ∧ P ∧ Q) ∨ ((P ∨ Q) ∧ ¬P ) ∨ ((P ∨ Q) ∧ ¬Q) 

⇔ (¬P ∧ ¬Q ∧ P ∧ Q) ∨ (P ∧ ¬P ) ∨ (Q ∧ ¬P ) ∨ (P ∧ ¬Q) ∨ (Q ∧ 

¬Q) which is the required disjunctive normal form. 

Note: The DNF of a given formula is not unique. 
 

Conjunctive Normal Form (CNF) 

A formula which is equivalent to a given formula and which consists of a product 

of elementary sums is called a conjunctive normal form of the given formula. 

 

The method for obtaining conjunctive normal form of a given formula is 
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similar to the one given for disjunctive normal form. Again, the conjunctive normal 

form is not unique. 



MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE - MRCET Page 33   

Example: Obtain conjunctive normal forms of 

(a) P ∧ (P → Q); (b) ¬(P ∨ Q)↔ (P ∧ Q). 

Solution: (a). P ∧ (P → Q) ⇔ P ∧ (¬P 

∨ Q) (b).¬(P ∨ Q)↔ (P ∧ Q) 

⇔ (¬(P ∨ Q) → (P ∧ Q)) ∧ ((P ∧ Q) → ¬(P ∨ Q)) 

⇔ ((P ∨ Q) ∨ (P ∧ Q)) ∧ (¬(P ∧ Q) ∨ ¬(P ∨ Q)) 

⇔ [(P ∨ Q ∨ P ) ∧ (P ∨ Q ∨ Q)] ∧ [(¬P ∨ ¬Q) ∨ (¬P ∧ ¬Q)] 

⇔ (P ∨ Q ∨ P ) ∧ (P ∨ Q ∨ Q) ∧ (¬P ∨ ¬Q ∨ ¬P ) ∧ (¬P ∨ ¬Q ∨ ¬Q) 

Note: A given formula is tautology if every elementary sum in CNF is 

tautology. Example: Show that the formula Q ∨ (P ∧ ¬Q) ∨ (¬P ∧ 

¬Q) is a tautology. 

Solution: First we obtain a CNF of the given formula. 

Q ∨ (P ∧ ¬Q) ∨ (¬P ∧ ¬Q) ⇔ Q ∨ ((P ∨ ¬P ) ∧ ¬Q) 

⇔ (Q ∨ (P ∨ ¬P )) ∧ (Q ∨ ¬Q) 

⇔ (Q ∨ P ∨ ¬P ) ∧ (Q ∨ ¬Q) 

Since each of the elementary sum is a tautology, hence the given formula 

is tautology. 

 

Principal Disjunctive Normal Form 
In this section, we will discuss the concept of principal disjunctive normal form 
(PDNF). 

 

Minterm: For a given number of variables, the minterm consists of conjunctions in 

which each statement variable or its negation, but not both, appears only once. 

Let P and Q be the two statement variables. Then there are 2
2 

minterms given by P ∧ Q, 

P ∧ ¬Q, 

¬P ∧ Q, and ¬P ∧ ¬Q. 

Minterms for three variables P , Q and R are P ∧ Q ∧ R, P ∧ Q ∧ ¬R, P ∧ ¬Q ∧ R,P∧ ¬Q ∧ 

¬R, ¬P 

∧ Q ∧ R, ¬P ∧ Q ∧ ¬R, ¬P ∧ ¬Q ∧ R and ¬P ∧ ¬Q ∧ ¬R. From the truth tables of these 

minterms of P and Q, it is clear that 

 

P Q P ∧ Q P ∧ 

¬Q 

¬P ∧ 

Q 

¬P 

∧ 

¬Q 

T T T F F F 

T F F T F F 

F T F F T F 
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F F F F F T 

 

(i). no two minterms are equivalent 

(ii). Each minterm has the truth value T for exactly one combination of the truth 

values of the variables P and Q. 

Definition: For a given formula, an equivalent formula consisting of disjunctions of 

minterms only is called the Principal disjunctive normal form of the formula. 

The principle disjunctive normal formula is also called the sum-of-products canonical 

form. 
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Methods to obtain PDNF of a given formula 

 
(a). By Truth table: 

(i). Construct a truth table of the given formula. 
(ii). For every truth value T in the truth table of the given formula, select the 

minterm which also has the value T for the same combination of the truth values of P 

and Q. 

(iii). The disjunction of these minterms will then be equivalent to the given 

formula. 

 

Example: Obtain the PDNF of P 

→ Q. Solution: From the truth 

table of P → Q 

P Q P → Q Minterm 

T

 

T

 

F 

F 

T

 

F

 

T 

F 

T

 

F

 

T 

T 

P ∧ Q 

P ∧ 

¬Q 

¬P ∧ Q 

¬P ∧ 

¬Q 

 

The PDNF of P → Q is (P ∧ Q) ∨ (¬P ∧ Q) ∨ (¬P ∧ ¬Q). 

∴ P → Q ⇔ (P ∧ Q) ∨ (¬P ∧ Q) ∨ (¬P ∧ ¬Q). 

Example: Obtain the PDNF for (P ∧ Q) ∨ (¬P ∧ R) ∨ 

(Q ∧ R). Solution: 

P Q R Minterm P ∧ Q ¬P ∧ 

R 

Q ∧ R (P ∧ Q) ∨ (¬P ∧ R) ∨ (Q ∧ 

R) 

T T T P ∧ Q ∧ R T F T T 

T T F P ∧ Q ∧ ¬R T F F T 

T F T P ∧ ¬Q ∧ R F F F F 

T F F P ∧ ¬Q ∧ ¬R F F F F 

F T T ¬P ∧ Q ∧ R F T T T 

F T F ¬P ∧ Q ∧ ¬R F F F F 

F F T ¬P ∧ ¬Q ∧ R F T F T 

F F F ¬P ∧ ¬Q ∧ 

¬R 
F F F F 
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The PDNF of (P ∧ Q) ∨ (¬P ∧ R) ∨ (Q ∧ R) is 

(P ∧ Q ∧ R) ∨ (P ∧ Q ∧ ¬R) ∨ (¬P ∧ Q ∧ R) ∨ (¬P ∧ ¬Q ∧ R). 

 

(b). Without constructing the truth table: 

 

In order to obtain the principal disjunctive normal form of a given 

formula is con- structed as follows: 
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(1). First replace →, by their equivalent formula containing only ∧, ∨ and ¬. 

(2). Next, negations are applied to the variables by De Morgan„s laws followed 

by the application of distributive laws. 

(3). Any elementarily product which is a contradiction is dropped. Minterms are 

ob-tained in the disjunctions by introducing the missing factors. Identical 

minterms appearing in the disjunctions are deleted. 

 

Example: Obtain the principal disjunctive normal 

form of (a) ¬P∨ Q; (b) (P ∧ Q) ∨ (¬P ∧ R) 

∨ (Q ∧ R). 

Solution: 

(a) ¬P ∨ Q ⇔ (¬P ∧ T ) ∨ (Q ∧ T ) [∵ A ∧ T ⇔ A] 

⇔ (¬P ∧ (Q ∨ ¬Q)) ∨ (Q ∧ (P ∨ ¬P )) [∵ P ∨ ¬P ⇔ T ] 

⇔ (¬P ∧ Q) ∨ (¬P ∧ ¬Q) ∨ (Q ∧ P ) ∨ (Q ∧ ¬P ) 

[∵ P ∧ (Q ∨ R) ⇔ (P ∧ Q) ∨ (P ∧ R) 

⇔ (¬P ∧ Q) ∨ (¬P ∧ ¬Q) ∨ (P ∧ Q) [∵ P ∨ P ⇔ 

P ] (b) (P ∧ Q) ∨ (¬P ∧ R) ∨ (Q ∧ R) 

⇔ (P ∧ Q ∧ T ) ∨ (¬P ∧ R ∧ T ) ∨ (Q ∧ R ∧ T ) 

⇔ (P ∧ Q ∧ (R ∨ ¬R)) ∨ (¬P ∧ R ∧ (Q ∨ ¬Q)) ∨ (Q ∧ R ∧ (P ∨ ¬P )) 

⇔ (P ∧ Q ∧ R) ∨ (P ∧ Q ∧ ¬R) ∨ (¬P ∧ R ∧ Q)(¬P ∧ R ∧ ¬Q) 

∨ (Q ∧ R ∧ P ) ∨ (Q ∧ R ∧ ¬P ) 

⇔ (P ∧ Q ∧ R) ∨ (P ∧ Q ∧ ¬R) ∨ (¬P ∧ Q ∧ R) ∨ (¬P ∧ ¬Q ∧ R) 

 

P ∨ (P ∧ Q) ⇔ P 

P ∨ (¬P ∧ Q) ⇔ P ∨ Q 

Solution: We write the principal disjunctive normal form of each formula and 

com-pare these normal forms. 

(a) P ∨ (P ∧ Q) ⇔ (P ∧ T ) ∨ (P ∧ Q) [∵ P ∧ Q ⇔ P ] 

⇔ (P ∧ (Q ∨ ¬Q)) ∨ (P ∧ Q) [∵ P ∨ ¬P ⇔ T ] 

⇔ ((P ∧ Q) ∨ (P ∧ ¬Q)) ∨ (P ∧ Q) [by distributive laws] 

⇔ (P ∧ Q) ∨ (P ∧ ¬Q) [∵ P ∨ P 

⇔ P ] which is the required 

PDNF. 

Now, ⇔ P ∧ T 

⇔ P ∧ (Q ∨ ¬Q) 

⇔ (P ∧ Q) ∨ (P ∧ 
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¬Q) which is the required PDNF. 

Hence, P ∨ (P ∧ Q) ⇔ P . 
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(b) P ∨ (¬P ∧ Q) ⇔ (P ∧ T ) ∨ (¬P ∧ Q) 

⇔ (P ∧ (Q ∨ ¬Q)) ∨ (¬P ∧ Q) 

⇔ (P ∧ Q) ∨ (P ∧ ¬Q) ∨ (¬P ∧ 

Q) which is the required PDNF. 

Now, 

P ∨ Q ⇔ (P ∧ T ) ∨ (Q ∧ T ) 

⇔ (P ∧ (Q ∨ ¬Q)) ∨ (Q ∧ (P ∨ ¬P )) 

⇔ (P ∧ Q) ∨ (P ∧ ¬Q) ∨ (Q ∧ P ) ∨ (Q ∧ ¬P ) 

⇔ (P ∧ Q) ∨ (P ∧ ¬Q) ∨ (¬P ∧ 

Q) which is the required PDNF. 

Hence, P ∨ (¬P ∧ Q) ⇔ P ∨ Q. 

Example: Obtain the principal disjunctive normal form of 

 

P → ((P → Q) ∧ ¬(¬Q ∨ ¬P )). (Nov. 

2011) Solution: Using P → Q ⇔ ¬P ∨ Q and De Morgan„s law, we obtain 

→ ((P → Q) ∧ ¬(¬Q ∨ ¬P )) ⇔ ¬P 

∨ ((¬P ∨ Q) ∧ (Q ∧ P )) 

 

⇔ ¬P ∨ ((¬P ∧ Q ∧ P ) ∨ (Q ∧ Q ∧ P )) ⇔ 

¬P ∨ F ∨ (P ∧ Q) 

 

⇔ ¬P ∨ (P ∧ Q) 

 

⇔ (¬P ∧ T ) ∨ (P ∧ Q) 

 

⇔ (¬P ∧ (Q ∨ ¬Q)) ∨ (P ∧ Q) 

⇔ (¬P ∧ Q) ∨ (¬P ∧ ¬Q) ∨ (P ∧ 

Q) Hence (P ∧ Q) ∨ (¬P ∧ Q) ∨ (¬P ∧ ¬Q) is the 

required PDNF. 

 

Principal Conjunctive Normal Form 

The dual of a minterm is called a Maxterm. For a given number of variables, the 

maxterm consists of disjunctions in which each variable or its negation, but not both, 
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appears only once. Each of the maxterm has the truth value F for exactly one com-

bination of the truth values of the variables. Now we define the principal conjunctive 

normal form. 
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For a given formula, an equivalent formula consisting of conjunctions of the max-

terms only is known as its principle conjunctive normal form. This normal form is 

also called the product-of-sums canonical form.The method for obtaining the PCNF 

for a given formula is similar to the one described previously for PDNF. 

 
Example: Obtain the principal conjunctive normal form of the formula 
(¬P→R)∧(Q↔P) Solution: 

(¬P → R) ∧ (Q ↔ P ) 

⇔ [¬(¬P ) ∨ R] ∧ [(Q → P ) ∧ (P → Q)] 

⇔ (P ∨ R) ∧ [(¬Q ∨ P ) ∧ (¬P ∨ Q)] 

⇔ (P ∨ R ∨ F ) ∧ [(¬Q ∨ P ∨ F ) ∧ (¬P ∨ Q ∨ F )] 

⇔ [(P ∨ R) ∨ (Q ∧ ¬Q)] ∧ [¬Q ∨ P ) ∨ (R ∧ ¬R)] ∧ [(¬P ∨ Q) ∨ (R ∧ ¬R)] 

⇔ (P ∨ R ∨ Q) ∧ (P ∨ R ∨ ¬Q) ∧ (P ∨ ¬Q ∨ R) ∧ (P ∨ ¬Q ∨ ¬R) 

∧ (¬P ∨ Q ∨ R) ∧ (¬P ∨ Q ∨ ¬R) 

⇔ (P ∨ Q ∨ R) ∧ (P ∨ ¬Q ∨ R) ∧ (P ∨ ¬Q ∨ ¬R) ∧ (¬P ∨ Q ∨ R) ∧ (¬P ∨ Q 

∨ ¬R) which is required principal conjunctive normal form. 

Note: If the principal disjunctive (conjunctive) normal form of a given formula A 

containing n variables is known, then the principal disjunctive (conjunctive) normal 

form of ¬A will consist of the disjunction (conjunction) of the remaining minterms 

(maxterms) which do not appear in the 

principal disjunctive (conjunctive) normal form of A. From A ⇔ ¬¬A one can obtain 

the principal conjunctive (disjunctive) normal form of A by repeated applications of 

De Morgan„s laws to the principal disjunctive (conjunctive) normal form of ¬A. 

 

Example: Find the PDNF form PCNF of S : P ∨ (¬P → (Q ∨ (¬Q → R))). 

Solution: 

 

 

 

 

 

 

 

which is the 

PCNF. 

⇔ P ∨ (¬P → (Q ∨ (¬Q → R))) 

⇔ P ∨ (¬(¬P ) ∨ (Q ∨ (¬(¬Q) ∨ R)) 

⇔ P ∨ (P ∨ Q ∨ (Q ∨ R))) 

⇔ P ∨ (P ∨ Q ∨ R) 

⇔ P ∨ Q ∨ R 

Now PCNF of ¬S is the conjunction of remaining maxterms, so 

PCNF of ¬S : (P ∨ Q ∨ ¬R) ∧ (P ∨ ¬Q ∨ R) ∧ (P ∨ ¬Q ∨ ¬R) ∧ (¬P ∨ Q ∨ R) 

∧ (¬P ∨ Q ∨ ¬R) ∧ (¬P ∨ ¬Q ∨ R) ∧ (¬P ∨ ¬Q ∨ 

¬R) Hence the PDNF of S is 
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¬(PCNF of ¬S) : (¬P ∧ ¬Q ∧ R) ∨ (¬P ∧ Q ∧ ¬R) ∨ (¬P ∧ Q ∧ R) ∨ (P ∧ ¬Q ∧ 

¬R) 

∨ ( P ∧ ¬Q ∧ R) ∨ (P ∧ Q ∧ ¬R) ∨ (P ∧ Q ∧ R) 
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Theory of Inference for Statement Calculus 

Definition: The main aim of logic is to provide rules of inference to infer a 

conclusion from certain premises. The theory associated with rules of inference is 

known as inference theory . 

 

Definition: If a conclusion is derived from a set of premises by using the accepted 

rules of reasoning, then such a process of derivation is called a deduction or a formal 

proof and the argument is called a valid argument or conclusion is called a valid 

conclusion. 

 

Note: Premises means set of assumptions, axioms, hypothesis. 

 

Definition: Let A and B be two statement formulas. We say that ‖B logically follows from 

A‖ or 

‖B is a valid conclusion (consequence) of the premise A‖ iff A → B is a tautology, 

that is A ⇒ B. We say that from a set of premises {H1, H2, · · · , Hm}, a conclusion 

C follows logically iff 

H1 ∧ H2 ∧ ... ∧ Hm ⇒ C 

(1) 
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Note: To determine whether the conclusion logically follows from the given 

premises, we use the following methods: 
 Truth table method 
 Without constructing truth table method. 

 

Validity Using Truth Tables 

Given a set of premises and a conclusion, it is possible to determine whether 

the conclusion logically follows from the given premises by constructing truth 

tables as follows. 

 

Let P1, P2, · · · , Pn be all the atomic variables appearing in the premises H1, 

H2, · · · , Hm and in the conclusion C. If all possible combinations of truth values are 

assigned to P1, P2, · · · , Pn and if the truth values of H1, H2, ..., Hm and C are entered 

in a table. We look for the rows in which all H1, 

H2, · · · , Hm have the value T. If, for every such row, C also has the value T, then (1) 

holds. That is, the conclusion follows logically. 

Alternatively, we look for the rows on which C has the value F. If, in every 

such row, at least one of the values of H1, H2, · · · , Hm is F, then (1) also holds. 

We call such a method a 
‗truth table technique„ for the determination of the validity of a conclusion. 

 

Example: Determine whether the conclusion C follows logically from the premises 

 

H1 and H2. 

(a) H1 : P → Q H2 : P C : Q 

(b) H1 : P → Q H2 : ¬P C : Q 

(c) H1 : P → Q H2 : ¬(P ∧ Q) C : ¬P 

(d) H1 : ¬P H2 : P Q C : ¬(P ∧ Q) 

(e) H1 : P → Q H2 : Q C : P 
Solution: We first construct the appropriate truth table, as shown in table. 

 

P Q P → 
Q 

¬P ¬(P ∧ 

Q) 
P Q 

T T T F F T 

T F F F T F 

F T T T T F 

F F T T T T 
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10 

(a) We observe that the first row is the only row in which both the premises have the 

value T 

. The conclusion also has the value T in that row. Hence it is valid. 

 

In (b) the third and fourth rows, the conclusion Q is true only in the third row, 

but not in the fourth, and hence the conclusion is not valid. 
Similarly, we can show that the conclusions are valid in (c) and (d) but not in (e). 

Rules of Inference 

The following are two important rules of inferences. 

 

Rule P: A premise may be introduced at any point in the derivation. 

 

Rule T: A formula S may be introduced in a derivation if S is 

tautologically implied by one or more of the preceding formulas 

in the derivation. 

 

Implication Formulas 

I1 : P ∧ Q ⇒ P (simplification) 

I2 : P ∧ Q ⇒ 

Q I3 : P ⇒ P 

∨ Q I4 : Q ⇒ 

P ∨ Q 

I5 : ¬P ⇒ P → Q 

I6 :  Q ⇒ P → 

Q I7 : ¬(P → 

Q) ⇒ P 

I8 : ¬(P → Q) ⇒ ¬Q 

I9 : P, Q ⇒ P ∧ Q 
I : 

¬P, P ∨ Q ⇒ Q (disjunctive syllogism) 
I 
11   :  P, P → Q ⇒ Q (modus ponens) 

I 
12  :  ¬Q, P → Q ⇒ ¬P (modus tollens) 

I 
13  :  P → Q, Q → R ⇒ P → R (hypothetical syllogism) 

I 
14  : P ∨ Q, P → R, Q → R ⇒ R (dilemma) 

Example: Demonstrate that R is a valid inference from the premises P → Q, Q 

→ R, and P . Solution: 
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{1} (1) P → Q Rule P 
{2} (2) P Rule P, 

{1, 2} (3) Q Rule T, (1), (2), and 

I13 

{4} (4) Q → R Rule P 

{1, 2, 4} (5) R Rule T, (3), (4), and 
I13 

Hence the result. 
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Example: Show that R∨S follows logically from the premises C ∨D, (C ∨D) → ¬H, ¬H 

→ (A ∧ 

¬B), and (A ∧ ¬B) → (R 

∨ S). Solution: 

 
{1} (1) (C ∨ D) → ¬H Rule P 

{2} (2) ¬H → (A ∧ ¬B) Rule P 

{1, 2} (3) (C ∨ D) → (A ∧ ¬B) Rule T, (1), (2), and 
I13 

{4} (4) (A ∧ ¬B) → (R ∨ S) Rule P 

{1, 2, 4} (5) (C ∨ D) → (R ∨ S) Rule T, (3), (4), and 

I13 

{6} (6) C ∨ D Rule P 

{1, 2, 4, 6} (7) R ∨ S Rule T, (5), (6), and 
I11 

Hence the result. 

 

Example: Show that S ∨R is tautologically implied by (P ∨Q)∧(P → R)∧(Q → S). 

Solution: 

 

 
{1} (1) P ∨ Q Rule P 

{1} (2) ¬P → Q Rule T, (1) P → Q ⇔ ¬P ∨ 

Q 

{3} (3) Q → S Rule P 

{1, 3} (4) ¬P → S Rule T, (2), (3), and I13 

{1, 3} (5) ¬S → P Rule T, (4), P → Q ⇔ ¬Q 

→ ¬P 

{6} (6) P → R Rule P 

{1, 3, 6} (7) ¬S → R Rule T, (5), (6), and I13 

{1, 3, 6} (8) S ∨ R Rule T, (7) and P → Q ⇔ ¬P ∨ Q 
Hence the result. 

 

Example: Show that R ∧ (P ∨ Q) is a valid conclusion from the 

premises P ∨ Q, Q → R, P → M, and ¬M. 

Solution:  

{1} (1) P → M Rule P 

{2} (2) ¬M Rule P 

{1, 2} (3) ¬P Rule T, (1), (2), and I12 

{4} (4) P ∨  Q Rule P 

{1, 2, 4} (5) Q Rule T, (3), (4), and I10 
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{1, 2, 4, 
6} 

(7) R Rule T, (5), (6), and 
I11 

{1, 2, 4, 

6} 

(8) R ∧ (P ∨ Q) Rule T, (4), (7) and 
I9 

Hence the result. 
 

Example: Show I12 : ¬Q, P → Q 

⇒ ¬P . Solution: 

 
{1} (1) P → Q Rule P 

{1} (2) ¬Q → ¬P Rule T, (1), and P → Q ⇔ ¬Q 

→ ¬P 

{3} (3) ¬Q Rule P 

{1, 3} (4) ¬P Rule T, (2), (3), and I11 

Hence the result. 

 

Example: Test the validity of the following argument: 

 

‖If you work hard, you will pass the exam. You did not pass. Therefore, you 

did not work hard‖. 

 

Example: Test the validity of the following statements: 

 

‖If Sachin hits a century, then he gets a free car. Sachin does not get 

a free car. Therefore, Sachin has not hit a century‖. 

Rules of Conditional Proof or Deduction Theorem 

We shall now introduce a third inference rule, known as CP or rule of conditional proof. 

Rule CP: If we can derive S from R and a set of premises, then we can derive R → 

S from the set of premises alone. 

Rule CP is not new for our purpose her because it follows from the equivalence 
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(P ∧ R) → S ⇔ P → (R → S) 

 

Let P denote the conjunction of the set of premises and let R be any formula. The 

above equivalence states that if R is included as an additional premise and S is 

derived from P ∧ R, then R → S can be derived from the premises P alone. 

Rule CP is also called the deduction theorem and is generally used if the conclu-

sion of the form R → S. In such cases, R is taken as an additional premise and S is 

derived from the given premises and R. 

 

Example: Show that R → S can be derived from the premises P → (Q → S), ¬R ∨ P , and 

Q. 

(Nov. 2011) 

 

Solution: Instead of deriving R → S, we shall include R as an additional premise and 

show S 

first. 

¬R ∨ P Rule P 

 

 

 

 

 

 

 

Example: Show that P → S can be derived from the premises ¬P ∨ Q, ¬Q ∨ R, 

and R → S. Solution: We include P as an additional premise and derive 

S. 

 
{1} 

{2} 

(1) 

(2) 

¬P ∨ Q 

P 

Rule P 

Rule P (assumed 

premise) 

{1, 2} (3) Q Rule T, (1), (2), and 
I10 

{4} (4) ¬Q ∨ R Rule P 

{1, 2, 4} (5) R Rule T, (3), (4), and 

I10 

{6} (6) R → S Rule P 

{1, 2, 4, 6} (7) S Rule T, (5), (6), and 

I11 

{1, 2, 4, 6} (8) P → S Rule CP 

Example: ‗If there was a ball game, then traveling was difficult. If they arrived on 

{1} 

{2} 

(1) 

(2) 

 
R Rule P (assumed premise) 

{1, 2} (3) P Rule T, (1), (2), and I10 

{4} (4) P → (Q → S) Rule P 

{1, 2, 4} (5) Q → S Rule T, (3), (4), and I11 

{6} (6) Q Rule P 

{1, 2, 4, 6} (7) S Rule T, (5), (6), and I11 

{1, 2, 4, 6} (8) R → S Rule CP 
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time, then traveling was not difficult. They arrived on time. Therefore, there was 

no ball game„. Show that these statements constitute a valid argument. Solution: 

Let us indicate the statements as follows: 

P : There was a ball 

game. Q: Traveling 

was difficult. R: They 
arrived on time. 
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Hence, the given premises are P → Q, R → ¬Q, and R. The conclusion is ¬P . 

 

 
{1} (1) R → ¬Q Rule P 

{2} (2) R Rule P 

{1, 2} (3) ¬Q Rule T, (1), (2), and I11 

{4} (4) P → Q Rule P 

{4} (5) ¬Q → ¬P Rule T, (4), and P → Q ⇔ ¬Q 

→ ¬P 

{1, 2, 4} (6) ¬P Rule T, (3), (5), and I11 

 

Example: By using the method of derivation, show that following statements con-

stitute a valid argument: ‖If A works hard, then either B or C will enjoy. If B enjoys, 

then A will not work hard. If D enjoys, then C will not. Therefore, if A works hard, 

D will not enjoy. 

 

Solution: Let us indicate statements as follows: 

Given premises are P → (Q∨R), Q → ¬P , and S → ¬R. The conclusion 

is P → ¬S. We include P as an additional premise and derive ¬S. 

{1} (1) P Rule P (additional premise) 

 
{2} 

{1, 2} 

(2) P → (Q ∨ R) 

(3) Q ∨ R 

Rule P 

Rule T, (1), (2), and I11 

{1, 2} (4) ¬Q → R Rule T, (3) and P → Q ⇔ P ∨ 
Q 

{1, 2} (5) ¬R → Q Rule T, (4), and P → Q ⇔ ¬Q 

→ ¬P 

{6} (6) Q → ¬P Rule P 

{1, 2, 6} (7) ¬R → ¬P Rule T, (5), (6), and I13 

{1, 2, 6} (8) P → R Rule T, (7) and P → Q ⇔ ¬Q 

→ ¬P 

{9} (9) S → ¬R Rule P 

{9} (10) R → ¬S Rule T, (9) and P → Q ⇔ ¬Q 

→ ¬P 

{1, 2, 6, 

9} 

(11

) 

P → ¬S Rule T, (8), (10) and I13 

{1, 2, 6, 
9} 

(12
) 

¬S Rule T, (1), (11) and I11 

 

Example: Determine the validity of the following arguments using propositional logic: 

‖Smoking is healthy. If smoking is healthy, then cigarettes are prescribed 
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by physi- cians. Therefore, cigarettes are prescribed by physicians‖.

 (May-

2012) 

Solution: Let us indicate the statements as follows: 

P : Smoking is healthy. 

Q: Cigarettes are prescribed by physicians. 

 

Hence, the given premises are P , P → Q. The conclusion is Q. 

{1} (1)  P → Q Rule P 

{2} (2) P Rule P 
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{1, 2} (3) Q Rule T, (1), (2), and I11 
Hence, the given statements constitute a valid argument. 

 

Consistency of Premises 

A set of formulas H1, H2, · · · , Hm is said to be consistent if their 

conjunction has the truth value T for some assignment of the truth values to the 

atomic variables appearing in H1, H2, 

· · · , Hm. 
If, for every assignment of the truth values to the atomic variables, at 

least one of the formulas H1, H2, · · · , Hm is false, so that their conjunction is 

identically false, then the formulas H1, H2, · · · , Hm are called inconsistent. 

Alternatively, a set of formulas H1, H2, · · · , Hm is inconsistent if their 

conjunction implies a contradiction, that is, 

 

where R is any 

formula. 

H1 ∧ H2 ∧ · · · ∧ Hm ⇒ R ∧ ¬R 

 

Example: Show that the following premises are inconsistent: 

(1). If Jack misses many classes through illness, then he fails 

high school. (2). If Jack fails high school, then he is uneducated. 

(3). If Jack reads a lot of books, then he is not uneducated. 

(4). Jack misses many classes through illness and reads a lot of books. 

Solution: Let us indicate the statements as follows: 

E: Jack misses many classes through illness. 

S: Jack fails high school. 

A: Jack reads a lot of books. 

H: Jack is uneducated. 

The premises are E → S, S → H, A → ¬H, and E ∧ A. 

 
{1} (1) E → S Rule P 

{2} (2) S → H Rule P 

{1, 2} (3) E → H Rule T, (1), (2), and I13 

{4} (4) A → ¬H Rule P 

{4} (5) H → ¬A Rule T, (4), and P → Q ⇔ ¬Q 

→ ¬P 

{1, 2, 4} (6) E → ¬A Rule T, (3), (5), and I13 

{1, 2, 4} (7) ¬E ∨ ¬A Rule T, (6) and P → Q ⇔ ¬P ∨ 

Q 

{1, 2, 4} (8) ¬(E ∧ A) Rule T, (7), and ¬(P ∧ Q) ⇔ ¬P 

∨ ¬Q 

{9} (9) E ∧ A Rule P 
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{1, 2, 4, 
9} 

(10
) 

¬(E ∧ A) ∧ (E ∧ 

A) 
Rule T, (8), (9) and I9 

Thus, the given set of premises leads to a contradiction and hence it is inconsistent. 
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Example: Show that the following set of premises is inconsistent: ‖If the contract is 

valid, then John is liable for penalty. If John is liable for penalty, he will go 

bankrupt. If the bank will loan him money, he will not go bankrupt. As a matter of 

fact, the contract is valid, and the bank will loan him money.‖ 

Solution: Let us indicate the statements as follows: 

V : The contract is valid. 

L: John is liable for 

penalty. M: Bank will 

loan him money. B: John 

will go bankrupt. 

 
{1} (1) V → L Rule P 

{2} (2) L → B Rule P 

{1, 2} (3) V → B Rule T, (1), (2), and I13 

{4} (4) M → ¬B Rule P 

{4} (5) M → ¬M Rule T, (4), and P → Q ⇔ ¬Q 

→ ¬P 

{1, 2, 4} (6) V → ¬M Rule T, (3), (5), and I13 

{1, 2, 4} (7) ¬V ∨ ¬M Rule T, (6) and P → Q ⇔ ¬P ∨ 

Q 

{1, 2, 4} (8) ¬(V ∧ M) Rule T, (7), and ¬(P ∧ Q) ⇔ ¬P 

∨ ¬Q 

{9} (9) V ∧ M Rule P 

{1, 2, 4, 
9} 

(10) ¬(V ∧ M) ∧ (V ∧ M) Rule T, (8), (9) and I9 

Thus, the given set of premises leads to a contradiction and hence it is inconsistent. 

 

Indirect Method of Proof 

The method of using the rule of conditional proof and the notion of an 

inconsistent set of premises is called the indirect method of proof or proof by 

contradiction. 

 

In order to show that a conclusion C follows logically from the premises H1, H2, · 

· · , 

Hm, we assume that C is false and consider ¬C as an additional premise. If the new 

set of premises is inconsistent, so that they imply a contradiction. Therefore, the 
assump-tion that ¬C is true does not hold. 

Hence, C is true whenever H1, H2, · · · , Hm are true. Thus, C follows 
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logically from the premises H1, H2, · · · , Hm. 
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Example: Show that ¬(P ∧ Q) follows from ¬P ∧ ¬Q. 

Solution: We introduce ¬¬(P ∧Q) as additional premise and show that this 

additional premise leads to a contradiction. 

 

{1} 

{1} 

(1) ¬¬(P ∧ Q) 

(2) P ∧ Q 

Rule P (assumed) 

Rule T, (1), and ¬¬P 

⇔ P 

{1} (3) P Rule T, (2), and I1 

{4} (4) ¬P ∧ ¬Q Rule P 

{4} (5) ¬P Rule T, (4), and I1 

{1, 4} (6) P ∧ ¬P Rule T, (3), (5), and I9 

Hence, our assumption is wrong. 

Thus, ¬(P ∧ Q) follows from ¬P ∧ ¬Q. 

Example: Using the indirect method of proof, show that 

P → Q, Q → R, ¬(P ∧ R), P ∨ R ⇒ R. 

Solution: We include ¬R as an additional premise. Then we show that this 

leads to a contradiction. 

 

 
{1} (1) P → Q Rule P 

{2} (2) Q → R Rule P 

{1, 2} (3) P → R Rule T, (1), (2), and 

I13 

{4} (4) ¬R Rule P (assumed) 

{1, 2, 4} (5) ¬P Rule T, (4), and I12 

{6} (6) P ∨ R Rule P 

{1, 2, 4, 6} (7) R Rule T, (5), (6) and 

I10 

{1, 2, 4, 6} (8) R ∧ ¬R Rule T, (4), (7), and 
I9 

Hence, our assumption is wrong. 

 

Example: Show that the following set of premises are inconsistent, using proof by 

contradiction 

P → (Q ∨ R), Q → ¬P, S → ¬R, P ⇒ P → ¬S. 

Solution: We include ¬(P → ¬S) as an additional premise. Then we show that 

this leads to a contradiction. 

∴ ¬(P → ¬S) ⇔ ¬(¬P ∨ ¬S) ⇔ P ∧ S. 
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{1} (1)  P → (Q ∨ R) Rule P 

 
{2} (2) P Rule P 

{1, 2} (3) Q ∨ R Rule T, (1), (2), and Modus 

Ponens 

{4} (4) P ∧ S Rule P (assumed) 

{1, 2, 4} (5)  S Rule T, (4), and P ∧ Q ⇒ P 
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{6} (6) S → ¬R Rule P 

{1, 2, 4, 6} (7) ¬R Rule T, (5), (6) and Modus 

Ponens 

{1, 2, 4, 6} (8) Q Rule T, (3), (7), and P ∧ Q, ¬Q 

⇒ P 

{9} (9) Q → ¬P Rule P 

{1, 2, 4, 6}      (10)  ¬P Rule T, (8), (9), and P ∧ Q, ¬Q ⇒ P 

{1, 2, 4, 6}      (11)   P ∧ ¬P Rule T, (2), (10), and P, Q ⇒ P ∧ Q 

{1, 2, 4, 6}      (12)  F Rule T, (11), and P ∧ ¬P ⇔ F 

Hence, it is proved that the given premises are inconsistent. 

 

The Predicate Calculus 

Predicate 

A part of a declarative sentence describing the properties of an object is 

called a predicate. The logic based upon the analysis of predicate in any 

statement is called predicate logic. 

Consider two statements: 

John is a 

bachelor Smith 

is a bachelor. 

In each statement ‖is a bachelor‖ is a predicate. Both John and Smith have 

the same property of being a bachelor. In the statement logic, we require two 

diff erent symbols to express them and these symbols do not reveal the 

common property of these statements. In predicate  calculus  these  

statements  can  be  replaced  by  a  single  statement  ‖x is a bachelor‖. A 

predicate is symbolized by a capital letters which is followed by the list of 

variables. The list of variables is enclosed in parenthesis. If P stands for the 

predicate ‖is a bachelor‖, then P (x) stands for ‖x is a bachelor‖,where x is a 

predicate variable. 

`The domain for P (x) : x is a bachelor, can be taken as the set of all 

human names. Note that P (x) is not a statement, but just an expression. 

Once a value is assigned to x, P (x) becomes a statement and has the truth 

value. If x is Ram, then P (x) is a statement and its truth value is true. 

 

Quantifiers 

Quantifiers: Quantifiers are words that are refer to quantities such as „some„ 

or „all„. Universal Quantifier: The phrase „forall„ (denoted by ∀) is called the 

universal quantifier. For example, consider the sentence ‖All human beings 

are mortal‖. 
Let P (x) denote „x is a mortal„. 

Then, the above sentence can be 
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written as (∀x ∈ S)P (x) or 

∀xP (x) 

where S denote the set of all human beings. 

∀x represents each of the following phrases, since they have essentially the same 

for all x 

For every x 

For each x. 

 

Existential Quantifier: The phrase „there exists„ (denoted by ∃) is called the 

exis-tential quantifier. 
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For example, consider the sentence 

‖There exists x such that x
2 

= 5. 

This sentence can be written as 

(∃x ∈ R)P (x) or (∃x)P 

(x), where P (x) : x
2 

= 5. 

∃x represents each of the following 

phrases There exists an x 
There is an x 
For some x 

There is at least one x. 

 

Example: Write the following statements in 

symbolic form: (i). Something is good 

(ii). Everything is 

good (iii). Nothing is 

good 

(iv). Something is not good. 

Solution: Statement (i) means ‖There is atleast one x such that, x is good‖. 

Statement (ii) means ‖Forall x, x is 

good‖. Statement (iii) means, ‖Forall x, x 

is not good‖. 

Statement (iv) means, ‖There is atleast one x such that, x is not good. 

Thus, if G(x) : x is good, then 

statement (i) can be denoted by 

(∃x)G(x) statement (ii) can be denoted 

by (∀x)G(x) statement (iii) can be 

denoted by (∀x)¬G(x) 

statement (iv) can be denoted by (∃x)¬G(x). 

Example: Let K(x) : x is a man 

L(x) : x is mortal 

M(x) : x is an integer 

N(x) : x either positive or 

negative Express the following using 

quantifiers: 
 All men are mortal 
 Any integer is either positive or negative. 

Solution: (a) The given statement can be written as 
for all x, if x is a man, then x is mortal and this can be 

expressed as (x)(K(x) → L(x)). 

(b) The given statement can be written as 

for all x, if x is an integer, then x is either positive or negative and this can 

be expressed as (x)(M(x) → N(x)). 
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Free and Bound Variables 

Given a formula containing a part of the form (x)P (x) or (∃x)P (x), such a 

part is called an x-bound part of the formula. Any occurrence of x in an x-

bound part of the formula is called a bound occurrence of x, while any 

occurrence of x or of any variable that is not a 
bound  occurrence  is  called  a  free  occurrence.  The  smallest  formula  
immediately 

following (∀x) or (∃x) is called the scope of the quantifier. 

Consider the following formulas: 

 
 (x)P (x, y) 
 (x)(P (x) → Q(x)) 

 (x)(P (x) → (∃y)R(x, y)) 

 (x)(P (x) → R(x)) ∨ (x)(R(x) → Q(x)) 

 (∃x)(P (x) ∧ Q(x)) 

 (∃x)P (x) ∧ Q(x). 

In (1), P (x, y) is the scope of the quantifier, and occurrence of x is bound 

occurrence, while the occurrence of y is free occurrence. 

 

In (2), the scope of the universal quantifier is P (x) → Q(x), and all 

concrescences of x are bound. 

 

In (3), the scope of (x) is P (x) → (∃y)R(x, y), while the scope of (∃y) is R(x, 

y). All occurrences of both x and y are bound occurrences. 

In (4), the scope of the first quantifier is P (x) → R(x) and the scope of the second 

is 

R(x) → Q(x). All occurrences of x are bound 

occurrences. In (5), the scope (∃x) is P (x) ∧ 

Q(x). 

In (6), the scope of (∃x) is P (x) and the last of occurrence of x in Q(x) is free. 

 

Negations of Quantified Statements 

(i). ¬(x)P (x) ⇔ (∃x)¬P (x) 

(ii). ¬(∃x)P (x) ⇔ (x)(¬P (x)). 

Example: Let P (x) denote the statement ‖x is a professional athlete‖ and let Q(x) 

denote thestatement ‖x plays soccer‖. The domain is the set of all people. 

(a). Write each of the following proposition in English. 

 (x)(P (x) → Q(x) 
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 (∃x)(P (x) ∧ Q(x)) 

 (x)(P (x) ∨ Q(x)) 

(b). Write the negation of each of the above propositions, both in symbols 

and in words. Solution: 

(a). (i). For all x, if x is an professional athlete then x plays soccer. 

‖All professional athletes plays soccer‖ or ‖Every professional 

athlete plays soccer‖. 

(ii). There exists an x such that x is a professional athlete and x plays soccer. 
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‖Some professional athletes paly soccer‖. 

(iii). For all x, x is a professional athlete or x plays soccer. 

‖Every person is either professional athlete or plays soccer‖. 

 

(b). (i). In symbol: We know that 

¬(x)(P (x) → Q(x)) ⇔ (∃x)¬(P (x) → Q(x)) ⇔ (∃x)¬(¬(P (x)) ∨ Q(x)) 

⇔ (∃x)(P (x) ∧ ¬Q(x)) 

There exists an x such that, x is a professional athlete and x does not paly soccer. 

In words: ‖Some professional athlete do not play 

soccer‖. (ii). ¬(∃x)(P (x) ∧ Q(x)) ⇔ (x)(¬P (x) 

∨ ¬Q(x)) 

In words: ‖Every people is neither a professional athlete nor plays soccer‖ or All 
people 
either not a professional athlete or do not play 

soccer‖. (iii). ¬(x)(P (x) ∨ Q(x)) ⇔ (∃x)(¬P 

(x) ∧ ¬Q(x)). 

In words: ‖Some people are not professional athlete or do not paly soccer‖. 
 

Inference Theory of the Predicate Calculus 

To understand the inference theory of predicate calculus, it is important to 

be famil-iar with the following rules: 

Rule US: Universal specification or instaniation 

(x)A(x) ⇒ A(y) 

From (x)A(x), one can conclude 

A(y). 
Rule ES: Existential specification 

(∃x)A(x) ⇒ A(y) 

From (∃x)A(x), one can conclude A(y). 

Rule EG: Existential generalization 

A(x) ⇒ (∃y)A(y) 

From A(x), one can conclude 

(∃y)A(y). Rule UG: Universal 

generalization 

A(x) ⇒ 

(y)A(y) From A(x), one can 

conclude (y)A(y). 

Equivalence formulas: 

E31 : (∃x)[A(x) ∨ B(x)] ⇔ (∃x)A(x) ∨ (∃x)B(x) 

E32 : (x)[A(x) ∧ B(x)] ⇔ (x)A(x) ∧ (x)B(x) 
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E33 : ¬(∃x)A(x) ⇔ (x)¬A(x) 

E34 : ¬(x)A(x) ⇔ (∃x)¬A(x) 

E35 : (x)(A ∨ B(x)) ⇔ A ∨ (x)B(x) 

E36 : (∃x)(A ∧ B(x)) ⇔ A ∧ (∃x)B(x) 

E37 : (x)A(x) → B ⇔ (x)(A(x) → B) 

E38 : (∃x)A(x) → B ⇔ (x)(A(x) → B) 

E39 : A → (x)B(x) ⇔ (x)(A → B(x)) 
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E40 : A → (∃x)B(x) ⇔ (∃x)(A → B(x)) 

E41 : (∃x)(A(x) → B(x)) ⇔ (x)A(x) → (∃x)B(x) 

E42 : (∃x)A(x) → (x)B(X) ⇔ (x)(A(x) → B(X)). 

Example: Verify the validity of the following arguments: 

‖All men are mortal. Socrates is a man. Therefore, Socrates is mortal‖. 

or 

Show that (x)[H(x) → M(x)] ∧ H(s) ⇒ 

M(s). 

Solution: Let us represent the statements as follows: 
H(x) : x is a 

man M(x) : x is 

a mortal s : 

Socrates 

 

Thus, we have to show that (x)[H(x) → M(x)] ∧ H(s) ⇒ M(s). 

 
{1} (1) (x)[H(x) → M(x)] Rule P 

{1} (2) H(s) → M(s) Rule US, (1) 

{3} (3) H(s) Rule P 

{1, 3} (4) M(s) Rule T, (2), (3), and 
I11 

 

Example: Establish the validity of the following argument:‖All integers are ratio-

nal numbers. Some integers are powers of 2. Therefore, some rational numbers are 

powers of 2‖. 

Solution: Let P (x) : x is an integer 

R(x) : x is rational number 

S(x) : x is a power 

of 2 Hence, the given 

statements becomes 

(x)(P (x) → R(x)), (∃x)(P (x) ∧ S(x)) ⇒ (∃x)(R(x) 

∧ S(x)) Solution: 

 
{1} (1) (∃x)(P (x) ∧ S(x)) Rule P 

{1} (2) P (y) ∧ S(y) Rule ES, (1) 

{1} (3) P (y) Rule T, (2) and P ∧ Q ⇒ P 

{1} (4) S(y) Rule T, (2) and P ∧ Q ⇒ Q 
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{5} (5) (x)(P (x) → R(x)) Rule P 

{5} (6) P (y) → R(y) Rule US, (5) 

{1, 5} (7) R(y) Rule T, (3), (6) and P, P → Q ⇒ Q 

{1, 5} (8)   R(y) ∧ S(y) Rule T, (4), (7) and P, Q ⇒ P ∧ Q 

{1, 5} (9)   (∃x)(R(x) ∧ S(x)) Rule EG, (8) 

Hence, the given statement is valid. 
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Example: Show that (x)(P (x) → Q(x)) ∧ (x)(Q(x) → R(x)) ⇒ (x)(P 

(x) → R(x)). Solution: 

 

{1} (1) (x)(P (x) → Q(x)) Rule P 

{1} (2) P (y) → Q(y) Rule US, (1) 

{3} (3) (x)(Q(x) → R(x)) Rule P 

{3} (4) Q(y) → R(y) Rule US, (3) 

{1, 3} (5) P (y) → R(y) Rule T, (2), (4), and 

I13 

{1, 3} (6) (x)(P (x) → R(x)) Rule UG, (5) 

Example: Show that (∃x)M(x) follows logically from the 

premises (x)(H(x) → M(x)) and (∃x)H(x). 

Solution: 

 

{1} (1) (∃x)H(x) Rule P 

{1} (2) H(y) Rule ES, (1) 

{3} (3) (x)(H(x) → M(x)) Rule P 

{3} (4) H(y) → M(y) Rule US, (3) 

{1, 3} (5) M(y) Rule T, (2), (4), and 

I11 

{1, 3} (6) (∃x)M(x) Rule EG, (5) 

Hence, the result. 

Example: Show that (∃x)[P (x) ∧ Q(x)] ⇒ (∃x)P (x) ∧ 

(∃x)Q(x). Solution: 

 

{1} (1) (∃x)(P (x) ∧ Q(x)) Rule P 

{1} (2) P (y) ∧ Q(y) Rule ES, (1) 

{1} (3) P (y) Rule T, (2), and I1 

{1} (4) (∃x)P (x) Rule EG, (3) 

{1} (5) Q(y) Rule T, (2), and I2 

{1} (6) (∃x)Q(x) Rule EG, (5) 

{1} (7) (∃x)P (x) ∧ (∃x)Q(x) Rule T, (4), (5) 
and I9 

Hence, the 

result. Note: Is the 

converse true? 

 

{1} (1) (∃x)P (x) ∧ Rule 
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(∃x)Q(x) P 

{1} (2) (∃x)P (x) Rule T, (1) and I1 

{1} (3) (∃x)Q(x) Rule T, (1), and I1 

{1} (4) P (y) Rule ES, (2) 

{1} (5) Q(s) Rule ES, (3) 
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Here in step (4), y is fixed, and it is not possible to use that variable 

again in step (5). Hence, the converse is not true. 

 

Example: Show that from (∃x)[F (x) ∧S(x)] → (y)[M(y) → W (y)] and (∃y)[M(y) ∧ ¬W 

(y)] the conclusion (x)[F (x) → ¬S(x)] follows. 

 

{1} (1)   (∃y)[M(y) ∧ ¬W (y)] Rule P 

{1} (2)   [M(z) ∧ ¬W (z)] Rule ES, (1) 

{1} (3)   ¬[M(z) → W (z)] Rule T, (2), and ¬(P → Q) ⇔ P ∧ ¬Q 

{1} (4)   (∃y)¬[M(y) → W (y)] Rule EG, (3) 

{1} (5)   ¬(y)[M(y) → W (y)] Rule T, (4), and ¬(x)A(x) ⇔ (∃x)¬A(x) 

{1} (6) (∃x)[F (x) ∧ S(x)] → (y)[M(y) → W (y)]Rule P 

{1, 6} (7)  ¬(∃x)[F (x) ∧ S(x)] Rule T, (5), (6) and I12 

{1, 6} (8) (x)¬[F (x)∧S(x)] Rule T, (7), and ¬(x)A(x) ⇔ (∃x)¬A(x) 

{1, 6} (9)  ¬[F (z) ∧ S(z)] Rule US, (8) 

{1, 6} (10)  ¬F (z) ∨ ¬S(z) Rule T, (9), and De Morgan„s laws 

{1, 6} (11)   F (z) → ¬S(z) Rule T, (10), and P → Q ⇔ ¬P ∨ Q 

{1, 6} (12)   (x)(F (x) → ¬S(x)) Rule UG, (11) 

Hence, the result. 

Example: Show that (x)(P (x) ∨ Q(x)) ⇒ (x)P (x) ∨ (∃x)Q(x). (May. 2012) 

Solution: We shall use the indirect method of proof by assuming ¬((x)P 

(x)∨(∃x)Q(x)) as an additional premise. 

 
{1} 

{1} 

(1) ¬((x)P (x) ∨ 
(∃x)Q(x)) 

(2) ¬(x)P (x) ∧ 

¬(∃x)Q(x) 

Rule P (assumed) 

Rule T, (1) ¬(P ∨ Q) ⇔ ¬P ∧ 

¬Q 

{1} (3) ¬(x)P (x) Rule T, (2), and I1 

{1} (4) (∃x)¬P (x) Rule T, (3), and ¬(x)A(x) ⇔ 

(∃x)¬A(x) 

{1} (5) ¬(∃x)Q(x) Rule T, (2), and I2 

{1} (6) (x)¬Q(x) Rule T, (5), and ¬(∃x)A(x) ⇔ 

(x)¬A(x) 

{1} (7) ¬P (y) Rule ES, (5), (6) and I12 

{1} (8) ¬Q(y) Rule US, (6) 

{1} (9) ¬P (y) ∧ ¬Q(y) Rule T, (7), (8)and I9 

{1} (10 ¬(P (y) ∨ Q(y)) Rule T, (9), and ¬(P ∨ Q) ⇔ ¬P 
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) ∧ ¬Q 

{11} (11) (x)(P (x) ∨ Q(x)) Rule P 

{11} (12) (P (y) ∨ Q(y)) Rule US 

{1, 11} (13) ¬(P (y) ∨ Q(y)) ∧ (P (y) ∨ Q(y)) Rule T, (10), (11), and I9 

{1, 11} (14)   F Rule T, and (13) 
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which is a contradiction.Hence, the statement is valid. 

 

Example: Using predicate logic, prove the validity of the following 

argument: ‖Every husband argues with his wife. x is a husband. Therefore, 

x argues with his wife‖. 

 

Solution: Let P (x): x is a husband. 

 

Q(x): x argues with his wife. 

 

Thus, we have to show that (x)[P (x) → Q(x)] ∧ P (x) ⇒ Q(y). 

 
{1} (1) (x)(P (x) → Q(x)) Rule P 

{1} (2) P (y) → Q(y) Rule US, (1) 

{1} (3) P (y) Rule P 

{1} (4) Q(y) Rule T, (2), (3), and 
I11 

Example: Prove using rules of inference 

Duke is a Labrador retriever. 

All Labrador retriever like to 

swim. Therefore Duke likes to 

swim. 

Solution: We denote 

L(x): x is a Labrador retriever. 

S(x): x likes to swim. 

d: Duke. 

 

We need to show that L(d) ∧ (x)(L(x) → S(x)) ⇒ S(d). 

 
{1} (1) (x)(L(x) → S(x)) Rule P 

{1} (2) L(d) → S(d) Rule US, (1) 

{2} (3) L(d) Rule P 

{1, 2} (4) S(d) Rule T, (2), (3), and 
I11. 

 

Previous questions 

 

1. Test the Validity of the  Following argument:  ―All dogs are barking. Some 

animals are dogs. Therefore, some animals are barking‖. 

2. Test the Validity of the Following argument: 

―Some cats are animals. Some dogs are animals. Therefore, some cats are dogs‖. 

3. Symbolizes and prove the validity of the following arguments : 
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(i) Himalaya is large. Therefore every thing is large. 

(ii) Not every thing is edible. Therefore nothing is edible. 

4. a) Find the PCNF of (~p↔r) ^(q↔p) ? 

b) Explain in brief about duality Law? 

 

c) Construct the Truth table for ~(~p^~q)? 

d) Find the disjunctive Normal form of ~(p → (q^r)) ? 

 

5. Define Well Formed Formula? Explain about Tautology with example? 

6. Explain in detail about the Logical Connectives with Examples? 
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7. Obtain the principal conjunctive normal form of the formula (┐P→R)Λ(Q↔P) 

8. Prove that (x)P(x)Q(x) → (x)P(x)(x)Q(x). Does the converse hold? 

9. Show that from i) (x)(F(x)  S(x))  (y)(M(y)  W(y)) 

ii) (y) (M(y)  ┐W(y)) the conclusion (x)(F(x)  ┐S(x)) follows. 

 

10. Obtain the principal disjunctive and conjunctive normal forms of (P 
(QR)) (┐P(┐Q┐R)). Is this formula a tautology? 

11. Prove that the following argument is valid: No Mathematicians are fools. No 

one who is not a fool is an administrator. Sitha is a mathematician. 

Therefore Sitha is not an administrator. 

12. Test the Validity of the Following argument: If you work hard, you will 

pass the exam. You did not pass. Therefore you did not work hard. 
13. Without constructing the Truth Table prove that (pq) q=pvq? 
14. Using normal forms, show that the formula Q(P┐Q)( ┐P┐Q) is a 

tautology. 

15. Show that (x) (P(x)  Q(x))  (x)P(x) 

 (x)Q(x) 16. Show that  ┐(PQ)  ( 

┐P( ┐PQ))  ( ┐PQ) 

(PQ)( ┐P( ┐PQ)) 

 (┐PQ) 17. Prove that (x) (P(x)  

Q(x)) (x)P(x)  (x)Q(x) 

18. Example: Prove or disprove the validity of the following arguments 

using the rules of inference. (i) All men are fallible (ii) All kings are 

men (iii) Therefore, all kings are fallible. 

19. Test the Validity of the Following argument: 

―Lions are dangerous animals, there are lions, and therefore there 

are dangerous animals.‖ 

 

MULTIPLE CHOICE QUESTIONS 

1: Which of the following propositions is tautology? 

A.(p v q)→q B. p v (q→p) C.p v (p→q) D.Both (b) & (c) 
Option: C 

2: Which of the proposition is p^ (~ p v q) is 
A.A tautology   B.A contradiction C.Logically equivalent to p ^ q D.All of 

above 

Option: C 

3: Which of the following is/are tautology? 

A.a v b → b ^ c B.a ^ b → b v c C.a v b → (b → c) D.None of these 
Option: B 

4: Logical expression ( A^ B) → ( C' ^ A) → ( A ≡ 1) is 
A.ContradictionB.Valid C.Well-formed formula D.None of these 

Option: D 

5: Identify the valid conclusion from the premises Pv Q, Q → R, P → M, ˥M 

A.P ^ (R v R) B.P ^ (P ^ R) C.R ^ (P v Q) D.Q ^ (P v R) 
Option: D 

6: Let a, b, c, d be propositions. Assume that the equivalence a ↔ (b v ˥b) and b 
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↔ c hold. Then truth value of the formula ( a ^ b) → ((a ^ c) v d) is 

always 
A.True B.False C.Same as the truth value of a D.Same as the truth value of b 
Option: A 

7: Which of the following is a declarative statement? 
A. It's right B. He says C.Two may not be an even integer D.I love you 

Option: B 

8: P → (Q → R) is equivalent to 

A. (P ^ Q) → R B.(P v Q) → R C.(P v Q) → ˥ R D.None of these 
Option: A 

9: Which of the following are tautologies? 
A.((P v Q) ^ Q) ↔ Q B.((P v Q) ^ ˥ P) → Q C.((P v Q) ^ P) → P

 D.Both (a) & (b) 
Option: D 

10: If F1, F2 and F3 are propositional formulae such that F1 ^ F2 → F3 and F1 ^ F2→F3 

are both tautologies, then which of the following is TRUE? 

A.Both F1 and F2 are tautologies B.The conjuction F1 ^ F2 is 

not satisfiable C.Neither is tautologies D.None of these 
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Option: B 

11. Consider two well-formed formulas in propositional logic 

F1 : P →˥P F2 : (P →˥P) v ( ˥ P →) Which of the following 

statement is correct? A.F1 is satisfiable, F2 is unsatisfiable B.F1 

is unsatisfiable, F2 is satisfiable C.F1 is unsatisfiable, F2 is valid

 D.F1 & F2 are both satisfiable 
Option: C 

12: What can we correctly say about proposition P1 : (p v ˥q) ^ 

(q →r) v (r v p) A.P1 is tautology B.P1 is satisfiable 

C.If p is true and q is false and r is false, the 

P1 is true D.If p as true and q is true and r is 

false, then P1 is true Option: C 

13: (P v Q) ^ (P → R )^ (Q →S) is equivalent to 

A.S ̂  R B.S → R C.S v R D.All of above 

Option: C 

14: The functionally complete set is 

A.{ ˥ , ̂ , v } B.{↓, ^ }C.{↑} D.None of these 
Option: C 

15: (P v Q) ^ (P→R) ^ (Q → R) is equivalent to 
A.P B.Q C.R D.True = T 
Option: C 

16: ˥(P → Q) is equivalent to 
A.P ̂  ˥ Q B.P ̂  QC.˥P v Q D.None of these 
Option: A 

17: In propositional logic , which of the following is equivalent to p → q? 
A.~p → q B.~p v q C.~p v~ q D.p →q 
Option: B 

18: Which of the following is FALSE? Read ^ as And, v as OR, ~as NOT, →as 

one way implication and ↔ as two way implication? 

A.((x → y)^ x) →y B.((~x →y)^ ( ~x ^ ~y))→y C.(x → 

( x v y)) D.((x v y) ↔( ~x v ~y)) 
Option: D 

19: Which of the following well-formed formula(s) are valid? 
A.((P → Q)^(Q → R))→ (P → R) B.(P → Q) →(˥P → ˥ Q) 
C.(P v (˥P v ˥ Q)) →P D.((P → R) v (Q → R)) → (P v Q}→R) 
Option: A 

20: Let p and q be propositions. Using only the truth table decide whether p ↔ q does 
not imply p 

→ ˥q is 
A.True B.False C.None D.Both A 

and B Option: A 
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Set:A set is collection of well 

defined objects. 

  UNIT-2 

SET THEORY 

 

In the above definition the words set and collection for all practical purposes are 

Synonymous. We have really used the word set to define itself. 

Each of the objects in the set is called a member of an element of the set. The 

objects themselves can be almost anything. Books, cities, numbers, animals, 

flowers, etc. Elements of a set are usually denoted by lower-case letters. While sets 

are denoted by capital letters of English larguage. 

 
The symbol ∈ indicates the membership in a set. 
If ―a is an element of the set A‖, then we write a ∈ A. 
The symbol ∈ is read ―is a member of ‖ or ―is an element of ‖. 
The symbol  is used to indicate that an object is 
not in the given set. The symbol  is read ―is not a 
member of ‖ or ―is not an element of ‖. If x is not an 
element of the set A then we write x  A. 
Subset: 
A set A is a subset of the set B if and only if every element of A is also an 
element of B. We also say that A is contained in B, and use the notation A  B. 

Proper Subset: 
A set A is called proper subset of the set B. If (i) A is subset of B and (ii) B is not a 
subset A i.e., A is said to be a proper subset of B if every element of A belongs to 
the set B, but there is atleast one element of B, which is not in A. If A is a proper 
subset of B, then we denote it by A  B. 

Super set: If A is subset of B, then B is called a superset of A. 

 

Null set: The set with no elements is called an empty set or null set. A Null set is 

designated by the symbol  . The null set is a subset of every set, i.e., If A is any 

set then   A. 

 
Universal set: 
In many discussions all the sets are considered to be subsets of one particular set. 
This set is called the universal set for that discussion. The Universal set is often 
designated by the script letter  . Universal set in 

not unique and it may change from one discussion to another. 

 
Power set: 
The set of all subsets of a set A is called the power set of A. 

The power set of A is denoted by P (A). If A has n elements in it, then P (A) has 2n 

elements: 

 
Disjoint sets: 
Two sets are said to be disjoint if they have no element in common. 
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Union of two sets: 
The union of two sets A and B is the set whose elements are all of the elements 
in A or in B or in both. The union of sets A and B denoted by A  B is read as 
―A union B‖. 

Intersection of two sets: 
The intersection of two sets A and B is the set whose elements are all of the 

elements common to both A and B. The intersection of the sets of ―A‖ and ―B‖ is 

denoted by A  B and is read as ―A intersection B‖ 

Difference of sets: 
If A and B are subsets of the universal set U, then the relative complement of B in Ais the 
set of all elements in 
A which are not in A. It is denoted by A – B thus: A – B = {x | x ∈ A and xB} 
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Complement of a set: 
If U is a universal set containing the set A, then U – A is called the complement of A. It is 
denoted by A

1
 . Thus 

A
1
 = {x: xA} 

Inclusion-Exclusion Principle: 

The inclusion–exclusion principle is a counting technique which generalizes the 

familiar method of obtaining the number of elements in the unionof two finite 

sets; symbolically expressed as 

|A ∪ B| = |A| + |B| − |A ∩ B|. 
Fig.Venn diagram showing the 

union of sets A and B 

where A and B are two finite sets and |S| indicates the cardinality of a set S (which may 

be considered as the number of elements of the set, if the set is finite). The formula 

expresses the fact that the sum of the sizes of the two sets may be too large since some 

elements may be counted twice. The double-counted elements are those in the 

intersection of the two sets and the count is corrected by subtracting the size of the 

intersection. 

The principle is more clearly seen in the case of three sets, which for the sets A, B and 

C is given by 

|A ∪ B∪ BC| = |A| + |B|+ |C| − |A ∩ B|− |C ∩ B| − |A ∩ C|+|A ∩B∩C|. 

 

Fig.Inclusion–exclusion 

illustrated by a Venn diagram 

for three sets 

This formula can be verified by counting how many times each region in the 

Venn diagram figure is included in the right-hand side of the formula. In this case, 

when removing the contributions of over-counted elements, the number of 

elements in the mutual intersection of the three sets has been subtracted too often, 
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so must be added back in to get the correct total. 

In general, Let A1, · · · , Ap be finite subsets of a set U. Then, 

 
Example: How many natural numbers n ≤ 1000 are not 

divisible by any of 2, 3? Ans: Let A2 = {n ∈ N | n ≤ 1000, 

2|n} and A3 = {n ∈ N | n ≤ 1000, 3|n}. 
Then, |A2 ∪ A3| = |A2| + |A3| − |A2 ∩ A3| = 500 + 333 − 166 = 667. 
So, the required answer is 1000 − 667 = 333. 

Example: How many integers between 1 and 10000 are divisible by 

none of 2, 3, 5, 7? Ans: For i ∈ {2, 3, 5, 7}, let Ai = {n ∈ N | n ≤ 

10000, i|n}. 
Therefore, the required answer is 10000 − |A2 ∪ A3 ∪ A5 ∪ A7| = 2285. 
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Relations 

 

Definition: Any set of ordered pairs defines a binary relation. 

 

We shall call a binary relation simply a relation. Binary relations 

represent relationships between elements of two sets. If R is a relation, a 

particular ordered pair, say (x, 

y) ∈ R can be written as xRy and can be read as ―x is in relation R to y‖. 

Example: Give an example of a relation. 

Solution: The relation ―greater than‖ for real numbers is denoted by 
′  

>
′
. If x and 

y are any two real numbers such that x > y, then we say that (x, y) ∈>. Thus the 

relation > is { } >= (x, 

y) : x and y are real numbers and x > y 

Example: Define a relation between two sets A = {5, 6, 7} and B = {x, y}. 

 

Solution: If A = {5, 6, 7} and B = {x, y}, then the subset R = {(5, x), (5, y), (6, 

x), (6, y)} is a relation from A to B. 

 

Definition: Let S be any relation. The domain of the relation S is defined as the 

set of all first elements of the ordered pairs that belong to S and is denoted by 

D(S). 

D(S) = { x : (x, y) ∈ S, for some y } 

The range of the relation S is defined as the set of all second elements of the 

ordered pairs that belong to S and is denoted by R(S). 

R(S) = { y : (x, y) ∈ S, for some x} 

Example: A = {2, 3, 4} and B = {3, 4, 5, 6, 7}. Define a relation from A to B by (a, b) ∈ R 

if a 

divides b. 

Solution: We obtain R = {(2, 4), (2, 6), (3, 3), (3, 6), (4, 4)}. 

 

Domain of R = {2, 3, 4} and range of R = {3, 4, 6}. 

 

Properties of Binary Relations in a Set 

A relation R on a set X is said to be 

 Reflexive relation if xRx or (x, x) ∈ R, ∀x ∈ X 

 Symmetric relation if xRy then yRx, ∀x, y ∈ X 

 Transitive relation if xRy and yRz then xRz, ∀x, y, z ∈ X 

 Irreflexive relation if x ̸Rx or (x, x)  R, ∀x ∈ X 

 Antisymmetric relation if for every x and y in X, whenever xRy and yRx, then x 

= y. 
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Examples: (i). If R1 = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 3)} be a relation on A = {1, 2, 

3}, then R1 is a reflexive relation, since for every x ∈ A, (x, x) ∈ R1. 

(ii). If R2 = {(1, 1), (1, 2), (2, 3), (3, 3)} be a relation on A = {1, 2, 3}, then R2 is 

not a reflexive relation, since for every 2 ∈ A, (2, 2)  R2. 

(iii). If R3 = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 1), (3, 1)} be a relation on A = {1, 2, 3}, then 

R3 is a symmetric relation. 
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 0 0 

i j 



(iv). If R4 = {(1, 2), (2, 2), (2, 3)} on A = {1, 2, 3} is an antisymmetric. 

Example: Given S = {1, 2, ..., 10} and a relation R on S, where R = {(x, y)| x + y = 10}. 

What are the properties of the relation R? 

 

Solution: Given that 

S = {1, 2, ..., 10} 
 = {(x, y)| x + y = 10} 

 = {(1, 9), (9, 1), (2, 8), (8, 2), (3, 7), (7, 3), (4, 6), (6, 4), (5, 5)}. 

(i). For any x ∈ S and (x, x) R. Here, 1 ∈ S but (1, 1)R. 

⇒  the relation R is not reflexive. It is also not irreflexive, since 

(5, 5) ∈ R. (ii). (1, 9) ∈ R ⇒ (9, 1) ∈ R 

(2, 8) ∈ R ⇒ (8, 2) ∈ R….. 

⇒  the relation is symmetric, but it is not antisymmetric. (iii). (1, 9) ∈ R and (9, 1) ∈ R 

⇒ (1, 1) R 

⇒  The relation R is not transitive. Hence, R is symmetric. 

 

Relation Matrix and the Graph of a Relation 

Relation Matrix: A relation R from a finite set X to a finite set Y can be repre-

sented by a matrix is called the relation matrix of R. 

 
Let X = {x1, x2, ..., xm} and Y = {y1, y2, ..., yn} be finite sets containing m and n 

elements, respectively, and R be the relation from A to B. Then R can be 
represented by an m × n matrix 

MR = [rij ], which is defined as 

follows: 
1, if (x , y )  R 

r
ij 

=  

0, if (xi , y j )  R 

 

Example. Let A = {1, 2, 3, 4} and B = {b1, b2, b3}. Consider the relation R = {(1, 

b2), (1, b3), (3, b2), (4, b1), (4, b3)}. Determine the matrix of the relation. 

Solution: A = {1, 2, 3, 4}, B = {b1, b2, b3}. 

Relation R = {(1, b2), (1, b3), (3, b2), (4, b1), (4, b3)}. 
Matrix of the relation R is written as 

 0 1 1  
  

That is MR = 
 0 0 0

 

 
1  

 1 0 1  
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 1 

Example: Let A = {1, 2, 3, 4}. Find the relation R on A determined by the matrix 
 1 0 

 

MR = 
 0 0 

 
0 

 1 1 

1 0 
 

1 0 
 
 

0 1 

Solution: The relation R = {(1, 1), (1, 3), (2, 3), (3, 1), (4, 1), (4, 2), (4, 4)}. 
 
Properties of a relation in a set: 
(i). If a relation is reflexive, then all the diagonal entries must be 1. 

(ii). If a relation is symmetric, then the relation matrix is symmetric, i.e., rij = rji 

for every i and j. (iii). If a relation is antisymmetric, then its matrix is such that if 

rij = 1 then rji = 0 for i = ̸ j. 

Graph of a Relation: A relation can also be represented pictorially by drawing its 

graph. Let R be a relation in a set X = {x1, x2, ..., xm}. The elements of X are 

represented by points or circles called nodes. These nodes are called vertices. If (xi, 

xj ) ∈ R, then we connect the nodes xi and xj 

by means of an arc and put an arrow on the arc in the direction from xi to xj . This 

is called an edge. If all the nodes corresponding to the ordered pairs in R are 
connected by arcs with proper arrows, then we get a graph of the relation R. 

 
Note: (i). If xiRxj and xj Rxi, then we draw two arcs between xi and xj with 

arrows pointing in  both directions. 

(ii). If xiRxi, then we get an arc which starts from node xi and returns to node xi. 

This arc is called a loop. 

 

Properties of relations: 

 

(i). If a relation is reflexive, then there must be a loop at each node. On the other 

hand, if the relation is irreflexive, then there is no loop at any node. 

(ii). If a relation is symmetric and if one node is connected to another, then there 

must be a return arc from the second node to the first. 

(iii). For antisymmetric relations, no such direct return path 

should exist. (iv). If a relation is transitive, the situation is not 

so simple. 

 

Example: Let X = {1, 2, 3, 4} and R={(x, y)| x > y}. Draw the graph of R and also 

give its matrix. Solution: R = {(4, 1), (4, 3), (4, 2), (3, 1), (3, 2), (2, 1)}. 

The graph of R and the matrix of R are 

 

 

 

 

0 0 
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1 2 

 1 
0 


 

3 4 

Graph of R 
 0 0 0 0 
  

MR = 
 1 0 0 0 

 
1 0  

 1 1 1 0 



MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE - MRCET Page 67   

 

Partition and Covering of a Set 

Let S be a given set and A = {A1, A2, · · · , Am} where each Ai, i = 1, 2, · · · , m is a subset 

of S and 
m 

Ai 
i 
1 

 S . 

Then the set A is called a covering of S, and the sets A1, A2, · · · , Am are said to 

cover S. If, in addition, the elements of A, which are subsets of S, are mutually 
disjoint, then A is called a 

partition of S, and the sets A1, A2, · · · , Am are called the blocks of the partition. 

Example: Let S = {a, b, c} and consider the following collections of subsets of S. A 

= {{a, b}, {b, c}}, B = {{a}, {a, c}}, C = {{a}, {b, c}}, D = {{a, b, c}}, E = {{a}, {b}, 

{c}}, and F = {{a}, {a, b}, {a, 

c}}. Which of the above sets are covering? 

 

Solution: The sets A, C, D, E, F are covering of S. But, the set B is not covering 

of S, since their union is not S. 

 

Example: Let S = {a, b, c} and consider the following collections of subsets of S. 

A = {{a, b}, {b, c}}, B = {{a}, {b, c}}, C = {{a, b, c}}, D = {{a}, {b}, {c}}, and E= 

{{a}, {a, c}}. 

Which of the above sets are covering? 

 

Solution: The sets B, C and D are partitions of S and also they are covering. Hence, 

every partition is a covering. 

 

The set A is a covering, but it is not a partition of a set, since the sets {a, b} and 

{b, c} are not disjoint. Hence, every covering need not be a partition. 

 

The set E is not partition, since the union of the subsets is not S. The partition C has 

one block and the partition D has three blocks. 

Example: List of all ordered partitions S = {a, b, c, d} of 

type (1, 2, 2). Solution: 

 

 

 

 

Equivalence Relations 

({a}, {b}, {c, d}), ({b}, {a}, {c, d}) 

({a}, {c}, {b, d}), ({c}, {a}, {b, d}) 

({a}, {d}, {b, c}), ({d}, {a}, {b, c}) 

({b}, {c}, {a, d}), ({c}, {b}, {a, d}) 

({b}, {d}, {a, c}), ({d}, {b}, {a, c}) 

({c}, {d}, {a, b}), ({d}, {c}, {a, b}). 

A relation R in a set X is called an equivalence relation if it is reflexive, symmetric 

and transitive. The following are some examples of equivalence relations: 

1. Equality of numbers on a set of real numbers. 
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2. Equality of subsets of a universal set. 

 

Example: Let X = {1, 2, 3, 4} and R == {(1, 1), (1, 4), (4, 1), (4, 4), (2, 2), (2, 3), (3, 2), 

(3, 3)}. 

Prove that R is an equivalence relation. 
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 0 



 1 0 0 
 

MR = 
 0 1 1 

 
1 1 

 1 0 0 

1 
 
 
0 
 

01 

1 

 

 

 

 

 

 

 

 

 

The corresponding graph of R is shown in figure: 

Clearly, the relation R is reflexive, symmetric and transitive. Hence, R is an 

equivalence relation. Example: Let X = {1, 2, 3, ..., 7} and R =(x, y)| x − y is 

divisible by 3. Show that R is an equivalence relation. 
Solution: (i). For any x ∈ X, x − x = 0 is divisible by 3. 

∴ xRx 

⇒ R is reflexive. 

(ii). For any x, y ∈ X, if xRy, then x − y is divisible by 3. 

⇒  −(x − y) is divisible by 3. 

⇒  y − x is divisible by 3. 

⇒  yRx 

Thus, the relation R is 

symmetric. (iii). For any x, y, z ∈ X, let 

xRy and yRz. 

⇒  (x − y) + (y − z) is divisible by 3 

⇒  x − z is divisible by 3 

⇒  xRz 

Hence, the relation R is transitive. 

Thus, the relation R is an equivalence relation. 

Congruence Relation: Let I denote the set of all positive integers, and let m be 

apositive integer. For x ∈ I and y ∈ I, define R as R = {(x, y)| x − y is divisible by m 

} 

The statement ‖x − y is divisible by m‖ is equivalent to the statement that both x and y 
have the 
same remainder when each is divided by m. 
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In this case, denote R by ≡ and to write xRy as x ≡ y (mod m), which is read as ‖x equals 

to y 

modulo m‖. The relation ≡ is called a congruence relation. 

Example: 83 ≡ 13(mod 5), since 83-13=70 is divisible by 

5. 

Example: Prove that the relation ―congruence modulo m‖ over the set of positive integers 

is an equivalence relation. 

 

Solution: Let N be the set of all positive integers and m be a positive integer. 
We define the relation ‖congruence modulo m‖ on N as follows: 

Let x, y ∈ N. x ≡ y (mod m) if and only if x − y is divisible by m. 
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Let x, y, z ∈ N. 

Then (i). x − x = 

0.m 

⇒  x ≡ x (mod m) for all x ∈ N 

(ii). Let x ≡ y (mod m). Then, x − y is divisible by m. 

⇒  −(x − y) = y − x is divisible 

by m. i.e., y ≡ x (mod m) 

∴ The relation ≡ is symmetric. 

⇒  x − y and y − z are divisible by m. Now (x − y) + (y − z) is divisible by 

m. i.e., x − z is divisible by m. 

⇒  x ≡ z (mod m) 

∴ The relation ≡ is transitive. 

Since the relation ≡ is reflexive, symmetric and transitive, the relation congruence 

modulo m is an equivalence relation. 

 

Example: Let R denote a relation on the set of ordered pairs of positive integers such that 

(x,y)R(u, 

v) iff xv = yu. Show that R is an equivalence relation. 

 

Solution: Let R denote a relation on the set of ordered pairs of positive integers. 

Let x, y, u and v be positive integers. Given (x, y)R(u, v) if and 

only if xv = yu. (i). Since xy = yx is true for all positive 

integers 

⇒  (x, y)R(x, y), for all ordered pairs (x, y) of positive integers. 

∴ The relation R is reflexive. (ii). Let (x, y)R(u, v) 

⇒  xv = yu ⇒ yu 

= xv ⇒ uy = vx 

⇒ (u, v)R(x, y) 

∴ The relation R is symmetric. 

(iii). Let x, y, u, v, m and n be positive 

integers Let (x, y)R(u, v) and (u, 

v)R(m, n) 

⇒  xv = yu and un = vm 

⇒  xvun = yuvm 

⇒  xn = ym, by canceling uv 

⇒ (x, y)R(m, n) 

∴ The relation R is transitive. 
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Since R is reflexive, symmetric and transitive, hence the 

relation R is an equivalence relation. 
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Compatibility Relations 

Definition: A relation R in X is said to be a compatibility relation if it is reflexive and 

symmetric. Clearly, all equivalence relations are compatibility relations. A compatibility 

relation is sometimes denoted by ≈. 

 

Example: Let X = {ball, bed, dog, let, egg}, and let the relation R be given by 

R = {(x, y)| x, y ∈ X ∧ xRy if x and y contain some common 

letter}. Then R is a compatibility relation, and x, y are called 

compatible if xRy. Note: ball≈bed, bed≈egg. But ball̸≈egg. 

Thus ≈ is not transitive. 

Denoting ‖ball‖ by x1, ‖bed‖ by x2, ‖dog‖ by x3, ‖let‖ by x4, and ‖egg‖ by x5, the graph of ≈ is 

given as follows: 

Maximal Compatibility Block: 

Let X be a set and ≈ a compatibility relation on X. A subset A ⊆ X is called a 

maximal compatibility block if any element of A is compatible to every other 

element of A and no element of X − A is compatible to all the elements of A. 

Example: The subsets {x1, x2, x4}, {x2, x3, x5}, {x2, x4, x5}, {x1, x4, x5} are 

maximal compatibility blocks. 

 

Example: Let the compatibility relation on a set {x1, x2, ..., x6} be given by the matrix: 
x2 1 
x3 1 1   
x4 0 0 1 
x5 0 0 1 1  
x6 1 0 1 0 1 

x1 x2 x
3 

x
4 

x
5 

Draw the graph and find the maximal compatibility blocks of the 

relation. Solution: 
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The maximal compatibility blocks are {x1, x2, x3},{x1, x3, x6},{x3, x5, x6},{x3, x4, x5}. 
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1 1  

Composition of Binary Relations 

Let R be a relation from X to Y and S be a relation from Y to Z. Then a relation 

written as R ◦ S is called a composite relation of R and S where R◦S = {(x, z)| x ∈ 

X, z ∈ Z, and there exists y ∈ Y with (x, y) ∈ R and (y, z) ∈ S }. 

Theorem: If R is relation from A to B, S is a relation from B to C and T is a relation from 

C to D 

then T◦ (S ◦ R) = (T ◦ S) ◦ R 

 

Example: Let R = {(1, 2), (3, 4), (2, 2)} and S = {(4, 2), (2, 5), (3, 1), (1, 3)}. Find R 

◦ S, S ◦ R, R ◦ (S ◦ R), (R ◦ S) ◦ R, R ◦ R, S ◦ S, and (R ◦ R) ◦ R. 

Solution: Given R = {(1, 2), (3, 4), (2, 2)} and S = {(4, 2), (2, 5), (3, 1), (1, 3)}. 

R ◦ S = {(1, 5), (3, 2), (2, 5)} 

S ◦ R = {(4, 2), (3, 2), (1, 4)} ≠ R ◦ S 

(R ◦ S) ◦ R = {(3, 2)} 

R ◦ (S ◦ R) = {(3, 2)} = (R ◦ S) ◦ R 

R ◦ R = {(1, 2), (2, 2)} 

R ◦ R ◦ S = {(4, 5), (3, 3), (1, 1)} 

 

Example: Let A = {a, b, c}, and R and S be relations on A whose 

matrices are as given below: 
 1 0 

 
MR =  0 1 

 1 

1  
1 

  
0 and MS 

=  1 
  
  

0 0 
 

0 1 

1  

 

Find the composite relations R ◦ S, S ◦ R, R ◦ R, S ◦ S and 

their matrices. Solution: 

R = {(a, a), (a, c), (b, a), (b, b), (b, c), (c, b)} 

S= {(a, a), (b, b), (b, c), (c, a), (c, c)}. From these, we find that 

R ◦ S = {(a, a), (a, c), b, a), (b, b), (b, c), (c, b), (c, c)} 
S ◦ R = {(a, a), (a, c), (b, b), (b, a), (b, c), (c, a), (c, b), (c, c)} 

R ◦ R = R
2 

= {(a, a), (a, c), (a, b), (b, a), (b, c), (b, b), (c, a), (c, b), 

(c, c)} S ◦ S = S
2 

= {(a, a), (b, b), (b, c), (b, a), (c, a), (c, c)}. 

 

The matrices of the above composite relations are as given 

below: 

 1 0 1 
  

1 0
 1 

 
 1 1 1 

1   1  1 
  

MRO S=
  
0 

1 1 ; MSO 
R =  

 ; MRO R = 
1 1 

1 ; 

1 0 
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1 

1 

1 

1 1 1 1 1 




 1   1   1  
    

1 0 0 
  

MSO S = 1 0 1  

 1  
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Transitive Closure 

Let X be any finite set and R be a relation in X. The relation R
+ 

= R∪R
2∪R

3 ∪· · ·∪R
n
 

in X is called the transitive closure of R in X. 

Example: Let the relation R = {(1, 2), (2, 3), (3, 3)} on the set {1, 2, 3}. What is the 

transitive closure of 

R? 
Solution: Given that R = {(1, 2), (2, 3), (3, 3)}. 

The transitive closure of R is R
+ 

= R ∪ R
2 ∪ R

3 

∪ · · · = R= {(1, 2), (2, 3), (3, 3)} 

R
2 

= R ◦ R = {(1, 2), (2, 3), (3, 3)} ◦ {(1, 2), (2, 3), (3, 3)} = {(1, 3), 
(2, 3), (3, 3)} 

R
3 

= R
2 

◦ R = {(1, 3), (2, 3), (3, 3)} 

R
4 

= R
3 

◦ R = {(1, 3), (2, 3), 

(3, 3)} R
+ 

= R ∪ R
2 ∪ R

3 ∪ 

R
4 ∪ ... 

= {(1, 2), (2, 3), (3, 3)} ∪ {(1, 3), (2, 3), (3, 3)} ∪ {(1, 3), (2, 3), (3, 3)} ∪ 

... 
={(1, 2), (1, 3), (2, 3), (3, 3)}. 

Therefore R
+ 

= {(1, 2), (1, 3), (2, 3), (3, 3)}. 

Example: Let X = {1, 2, 3, 4} and R = {(1, 2), (2, 3), (3, 4)} be a relation on X. Find R
+

. 
Solution: Given R = {(1, 2), (2, 3), (3, 4)} 

R
2 

= {(1, 3), (2, 4)} 

R
3 

= {(1, 4)} 

R
4 

= {(1, 4)} 

R
+ 

= {(1, 2), (2, 3), (3, 4), (1, 3), (2, 4), (1, 4)}. 

Partial Ordering 

A binary relation R in a set P is called a partial order relation or a partial 

ordering in P iff R is reflexive, antisymmetric, and transitive. i.e., 

 aRa for all a ∈ P 

 aRb and bRa ⇒ a = b 

 aRb and bRc ⇒ aRc 

A set P together with a partial ordering R is called a partial ordered set or poset. The 

relation R is often denoted by the symbol ≤ which is diff erent from the usual less 

than equal to symbol. Thus, if 
≤ is a partial order in P , then the ordered pair (P, ≤) is called a poset. 

 

Example: Show that the relation ‖greater than or equal to‖ is a partial ordering on 

the set of integers. 

Solution: Let Z be the set of all integers and the relation R =
′
≥

′
 

(i). Since a ≥ a for every integer a, the relation 
′ 
≥

′ 
is 

reflexive. (ii). Let a and b be any two integers. 
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Let aRb and bRa ⇒ a ≥ b and b ≥ a 

⇒ a = b 

∴ The relation 
′ 
≥

′ 
is antisymmetric. (iii). 

Let a, b and c be any three integers. 
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Let aRb and bRc ⇒ a ≥ b and b ≥ c 

⇒ a ≥ c 

∴ The relation 
′ 
≥

′ 
is transitive. 

Since the relation 
′ 
≥

′ 
is reflexive, antisymmetric and transitive, 

′ 
≥

′ 
is partial ordering on 

the set of integers. Therefore, (Z, ≥) is a poset. 

 

Example: Show that the inclusion ⊆ is a partial ordering on the set power 

set of a set S. Solution: Since (i). A ⊆ A for all A ⊆ S, ⊆ is reflexive. 

(ii). A ⊆ B and B ⊆ A ⇒ A = B, ⊆ is 

antisymmetric. (iii). A ⊆ B and B ⊆ C ⇒ A 

⊆ C, ⊆ is transitive. 

Thus, the relation ⊆ is a partial ordering on the power set of S. 

Example: Show that the divisibility relation 
′
/
′ 
is a partial ordering on the set of 

positive integers. Solution: Let Z
+ 

be the set of positive integers. 

Since (i). a/a for all a ∈ Z
+

, / is reflexive. 

(ii). a/b and b/a ⇒ a = b, / is 

antisymmetric. (iii). a/b and b/c ⇒ 

a/c, / is transitive. 

It follows that / is a partial ordering on Z
+ 

and (Z
+

, /) is a poset. 

Note: On the set of all integers, the above relation is not a partial order as a and 

−a both divide each other, but a = −a. i.e., the relation is not antisymmetric. 

Definition: Let (P, ≤) be a partially 

ordered set. If for every x, y ∈ P we have either x ≤ y ∨ y ≤ x, then ≤ is called a simple 

ordering or 

linear ordering on P , and (P, ≤) is called a totally ordered or simply ordered set or a 

chain. 

Note: It is not necessary to have x ≤ y or y ≤ x for every x and y in a poset P . In fact, 

x may not be related to y, in which case we say that x and y are incomparable. 

Examples: 
(i). The poset (Z, ≤) is a totally ordered. 

Since a ≤ b or b ≤ a whenever a and b are integers. 
(ii). The divisibility relation / is a partial ordering on the set of positive integers. 

Therefore (Z
+

, /) is a poset and it is not a totally ordered, since it contain elements that 

are 

incomparable, such as 5 and 7, 3 and 5. 

 

Definition: In a poset (P, ≤), an element y ∈ P is said to cover an element x ∈ P if x 
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< y and if there does not exist any element z ∈ P such that x ≤ z and z ≤ y; that is, y 

covers x ⇔ (x < y ∧ (x ≤ z 

≤ y ⇒ x = z ∨ z = y)). 

Hasse Diagrams 

A partial order ≤ on a set P can be represented by means of a diagram known as 

Hasse diagram of (P, ≤). In such a diagram, 

(i). Each element is represented by a small circle or dot. 

(ii). The circle for x ∈ P is drawn below the circle for y ∈ P if x < y, and a line 

is drawn between x and y if y covers x. 
(iii). If x < y but y does not cover x, then x and y are not connected directly by a 

single line. 
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0 

1 

1 




Note: For totally ordered set (P, ≤), the Hasse diagram consists of circles one below 

the other. The poset is called a chain. 

 

Example: Let P = {1, 2, 3, 4, 5} and ≤ be the relation ‖less than or equal to‖ 

then the           Hasse diagram is: 

 

It is a totally ordered set. 

 

Example: Let X = {2, 3, 6, 12, 24, 36}, and the relation ≤ be such that x ≤ y if x 

divides y. Draw the Hasse diagram of (X, ≤). Solution: The Hasse diagram is is 

shown below: 

 

 

It is not a total order set. 

 

Example: Draw the Hasse diagram for the relation R on A = {1, 2, 3, 4, 5} whose 

relation matrix given below: 

 

 

 

 

 

 

 

Solutio

n: 

 1 0 1 1 1 
  
 0 1 1 1 1 
 0 0 1 1  

MR  =   
 0 0 0 1 0 

 0 0 0  
  
  

R= {(1, 1), (1, 3), (1, 4), (1, 5), (2, 2), (2, 3), (2, 4), (2, 5), (3, 3), (3, 4), (3, 5), (4, 
4), (5.5)}. 

 

Hasse diagram for MR is 
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4 5 

3 

1 2 
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Example: A partial order R on the set A = {1, 2, 3, 4} is represented by the 

following digraph. Draw the Hasse diagram for R. 

 
 

Solution: By examining the given digraph , we find that 

R= {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)}. 

We check that R is reflexive, transitive and antisymmetric. Therefore, R is partial 

order relation on A. 

The hasse diagram of R is shown below: 

 

Example: Let A be a finite set and ρ(A) be its power set. Let ⊆ be the inclusion 

relation on the elements of ρ(A). Draw the Hasse diagram of ρ(A), ⊆) for 

 A = {a} 
 A = {a, 

b}. Solution: (i). Let A 
= {a} 

ρ(A) = {ϕ, a} 

Hasse diagram of (ρ(A), ⊆) is shown in Fig: 

 

 

(ii). Let A = {a, b}. ρ(A) = {ϕ, {a}, {b}, {a, 

b}}. The Hasse diagram for (ρ(A), ⊆) is 

shown in fig: 

 

 

 



MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE - MRCET Page 84   

Example: Draw the Hasse diagram for the partial ordering ⊆ on the power set P (S) 

where S = {a, b, c}. 
Solution: S = {a, b, c}. 
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P (S) = {ϕ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}. 

Hasse diagram for the partial ordered set is shown in fig: 

 

 

Example: Draw the Hasse diagram representing the positive divisions of 36 (i.e., D36). 

Solution: We have D36 = {1, 2, 3, 4, 6, 9, 12, 18, 36} if and only a divides b. The 

Hasse diagram for R is shown in Fig. 

Minimal and Maximal elements(members): Let (P, ≤) denote a partially or-

dered set. An element y ∈ P is called a minimal member of P relative to ≤ if for no 

x ∈ P , is x < y. 

Similarly an element y ∈ P is called a maximal member of P relative to the partial 

ordering ≤ if 

for no x ∈ P , is y < 

x. Note: 
(i). The minimal and maximal members of a partially ordered set need not unique. 
(ii). Maximal and minimal elements are easily calculated from the 

Hasse diagram. They are the 'top' and 'bottom' elements in the 

diagram. 

Example: 

 

 

 

 

 

In the Hasse diagram, there are two maximal elements and two 

minimal elements. The elements 3, 5 are maximal and the elements 1 

and 6 are minimal. 

Example: Let A = {a, b, c, d, e} and let the 

partial order on A in the natural 

way. 



MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE - MRCET Page 86   

The element a is maximal. 

The elements d and e are minimal. 

 

Upper and Lower Bounds: Let (P, ≤) be a partially ordered set and let A ⊆ P . Any 

element x ∈ P 

is called an upper bound for A if for all a ∈ A, a ≤ x. Similarly, any element x ∈ P is 

called a 



MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE - MRCET Page 87   

lower bound for A if for all a ∈ A, x ≤ a. Example: A = {1, 2, 3, ..., 6} be ordered as 

pictured in figure. 

 

 

 

 

 

If B = {4, 5} then the upper bounds of B are 1, 2, 3. The lower bound of B is 6. 

Least Upper Bound and Greatest Lower Bound: 

Let (P, ≤) be a partial ordered set and let A ⊆ P . An element x ∈ P is a least upper 

bound or supremum for A if x is an upper bound for A and x ≤ y where y is any 

upper bound for A. Similarly, the the greatest lower bound or in mum for A is an 

element x ∈ P such that x is a lower bound and y ≤ x for all lower bounds y. 
Example: Find the great lower bound and the least upper bound of {b, d, g}, if they exist 
in the 

poset shown in fig: 

Solution: The upper bounds of {b, d, g} are g and h. Since g < h, g is the least 

upper bound. The lower bounds of {b, d, g} are a and b. Since a < b, b is the 

greatest lower bound. 

Example: Let A = {a, b, c, d, e, f, g, h} denote a partially ordered set whose Hasse 

diagram is shown in Fig: 

 

 

If B = {c, d, e} then f, g, h are upper 

bounds of B. The element f is least upper 

bound. 

 

 

Example: Consider the poset A = {1, 2, 3, 4, 5, 6, 7, 8} whose Hasse diagram is shown in 

Fig and 

let B = {3, 4, 5} 
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The elements 1, 2, 3 are lower 

bounds of B. 3 is greatest lower 

bound. 
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Functions 
A function is a special case of relation. 
Definition: Let X and Y be any two sets. A relation f from X to Y is called a function if for 

every x 

∈ X, there is a unique element y ∈ Y such that (x, y) ∈ f. Note: The definition of 

function requires that a relation must satisfies two additional conditions in order to 

qualify as a function. These conditions are as follows: 

(i) For every x ∈ X must be related to some y ∈ Y , i.e., the domain of f must be X 

and nor merely a subset of X. 

(ii). Uniqueness, i.e., (x, y) ∈ f and (x, z) ∈ f ⇒ y = z. 

The notation f : X → Y , means f is a function from X toY . 
Example: Let X = {1, 2, 3}, Y = {p, q, r} and f = {(1, p), (2, q), (3, r)} then f(1) = p, f(2) = 
q, f(3) 
= r. Clearly f is a function from X to Y . 

 

 

 

Domain and Range of a Function: If f : X → Y is a function, then X is called the 

Domain of f and the set Y is called the codomain of f. The range of f is defined as 

the set of all images under f. 

It is denoted by f(X) = {y| for some x in X, f(x) = y} and is called the image of X in Y . The 

Range 

f is also denoted by Rf . 

Example: If the function f is defined by f(x)=x
2 

+ 1 on the set {−2, −1, 0, 1, 2}, find the 

range of 
f. 

Solution: f(−2) = (−2)
2 

+ 1 = 5 

f(−1) = (−1)
2 

+ 1 = 2 

f(0) = 0 + 1 = 1 

 

f(1) = 1 + 1 = 2 

 

f(2) = 4 + 1 = 5 

 

Therefore, the range of f = {1, 2, 5}. 

 

Types of Functions 

One-to-one(Injection): A mapping f : X → Y is called one-to-one if distinct 

elements of X are mapped into distinct elements of Y , i.e., f is one-to-one if 
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x1 ≠ x2 ⇒ f(x1) ≠ 

f(x2) or equivalently f(x1) = f(x2) ⇒ x1 = x2 for 

x1, x2 ∈ X. 
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Example: f : R → R defined by f(x) = 3x, ∀x ∈ R is one-one, since 

f(x1) = f(x2) ⇒ 3x1 = 3x2 ⇒ x1 = x2, ∀x1, x2 ∈ R. 

Example: Determine whether f : Z → Z given by f(x) = x
2

, x ∈ Z is a one-to-One 

function. Solution: The function f : Z → Z given by f(x) = x
2

, x ∈ Z is not a one-to-

one function. This is because both 3 and -3 have 9 as their image, which is against 

the definition of a one-to-one function. 

 

Onto(Surjection): A mapping f : X → Y is called onto if the range set Rf = Y . 

If f : X → Y is onto, then each element of Y is f-image of atleast one 

element of X. i.e., {f(x) : x ∈ X} = Y . 

If f is not onto, then it is said to be into. 
 

 

 

Surjective Not Surjective 

Example: f : R → R, given by f(x) = 2x, ∀x ∈ R is onto. 

Bijection or One-to-One, Onto: A mapping f : X → Y is called one-to-one, onto or 

bijective if it is both one-to-one and onto. Such a mapping is also called a one-to-

one correspondence between X and Y . 

 

 

Example: Show that a mapping f : R → R defined by f(x) = 2x + 1 for x ∈ R is a 

bijective map from R to R. 

Solution: Let f : R → R defined by f(x) = 2x + 1 for x ∈ R. We need to prove that f is 

a bijective map, i.e., it is enough to prove that f is one-one and onto. 

 Proof of f being one-to-one 
Let x and y be any two elements in R such that f(x) = f(y) 

⇒ 2x + 1 = 2y + 1 
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⇒ x = y 

Thus, f(x) = f(y) ⇒ x = y 

This implies that f is one-to-one. 
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 Proof of f being onto 
Let y be any element in the codomain R 

⇒  f(x) = y 

⇒ 2x + 1 = y 

⇒ x = (y-1)/2 

Clearly, x = (y-1)/2∈ R 

Thus, every element in the codomain has pre-image in 

the domain. This implies that f is onto 

Hence, f is a bijective map. 

Identity function: Let X be any set and f be a function such that f : X → X is defined by 

f(x) = x 

for all x ∈ X. Then, f is called the identity function or identity transformation on X. It 

can be 

denoted by I or Ix. 
Note: The identity function is both one-to-one and onto. 

Let Ix(x) = Ix(y) 

⇒  x = y 

⇒  Ix is one-to-one 

Ix is onto since x = Ix(x) for all x. 

Composition of Functions 

Let f : X → Y and g : Y → Z be two functions. Then the composition of f and g 

denoted by g ◦ f, is the function from X to Z defined as 

(g ◦ f)(x) = g(f(x)), for all x ∈ X. 

Note. In the above definition it is assumed that the range of the function f is a 

subset of Y (the Domain of g), i.e., Rf ⊆ Dg. g ◦ f is called the left composition g 

with f. 

Example: Let X = {1, 2, 3}, Y = {p, q} and Z = {a, b}. Also let f : X → Y be f = {(1, p), (2, 
q), (3, 
q)} and g : Y → Z be given by g = {(p, b), (q, b)}. Find g ◦ f. Solution: g ◦ f = {(1, b), (2, 

b), (3, b). 

 

Example: Let X = {1, 2, 3} and f, g, h and s be the functions from 

X to X given by 

f = {(1, 2), (2, 3), (3, 1)} g = {(1, 2), (2, 1), (3, 3)} 

h = {(1, 1), (2, 2), (3, 1)} s = {(1, 1), (2, 2), (3, 3)} 

Find f ◦ f; g ◦ f; f ◦ h ◦ g; s ◦ g; g ◦ s; s ◦ s; and f ◦ s. 

 

Solution: 

f ◦ g = {(1, 3), (2, 2), (3, 1)} 

g ◦ f = {(1, 1), (2, 3), (3, 2)} ≠ f ◦ g 

f ◦ h ◦ g = f ◦ (h ◦ g) = f ◦ {(1, 2), (2, 1), (3, 1)} 
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= {(1, 3), (2, 2), (3, 2)} 

s ◦ g = {(1, 2), (2, 1), (3, 3)} = g 

g ◦ s = {(1, 2), (2, 1), (3, 3)} 

∴ s ◦ g = g ◦ s = g 

s ◦ s = {(1, 1), (2, 2), (3, 3)} = s 

f ◦ s = {(1, 2), (2, 3), (3, 1)} 

Thus, s ◦ s = s, f ◦ g ≠g ◦ f, s ◦ g = g ◦ s = g and h ◦ s = s ◦ h = h. 
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Example: Let f(x) = x + 2, g(x) = x − 2 and h(x) = 3x for x ∈ R, where R is 

the set of real numbers. Find g ◦ f; f ◦ g; f ◦ f; g ◦ g; f ◦ h; h ◦ g; h ◦ 

f; and f ◦ h ◦ g. 
Solution: f : R → R is defined by f(x) = x + 2 

f: R → R is defined by g(x) = x − 2 

h : R → R is defined by h(x) = 3x 

 g ◦ f : R → R 

Let x ∈ R. Thus, we can write 

(g ◦ f)(x) = g(f(x)) = g(x + 2) = x + 2 − 2 = x 

∴ (g ◦ f)(x) = {(x, x)| x ∈ R} 

 (f ◦ g)(x) = f(g(x)) = f(x − 2) = (x − 2) + 2 = x 

∴ f ◦ g = {(x, x)| x ∈ R} 

 (f ◦ f)(x) = f(f(x)) = f(x + 2) = x + 2 + 2 = x + 4 

∴ f ◦ f = {(x, x + 4)| x ∈ R} 

 (g ◦ g)(x) = g(g(x)) = g(x − 2) = x − 2 − 2 = x − 4 

⇒ g ◦ g = {(x, x − 4)| x ∈ R} 

 (f ◦ h)(x) = f(h(x)) = f(3x) = 3x + 2 

∴ f ◦ h = {(x, 3x + 2)| x ∈ R} 

 (h ◦ g)(x) = h(g(x)) = h(x − 2) = 3(x − 2) = 3x − 6 

∴ h ◦ g = {(x, 3x − 6)| x ∈ R} 

 (h ◦ f)(x) = h(f(x)) = h(x + 2) = 3(x + 2) = 3x + 6 h ◦ f = 

{(x, 3x + 6)| x ∈ R} 

 (f ◦ h ◦ g)(x) = [f ◦ (h ◦ g)](x) 
f(h ◦ g(x)) = f(3x − 6) = 3x − 6 + 2 = 3x − 4 

∴ f ◦ h ◦ g = {(x, 3x − 4)| x ∈ R}. 

 
Example: What is composition of functions? Let f and g be functions from R to 

R, where R is a set of real numbers defined by f(x) = x
2 

+ 3x + 1 and g(x) = 2x − 
3. Find the composition of functions: i) f ◦ f ii) f ◦ g iii) g ◦ f. 
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Inverse Functions 

A function f : X → Y is aid to be invertible of its inverse function f
−1 

is also function 

from the 

range of f into X. 

Theorem: A function f : X → Y is invertible ⇔ f is one-to-one and onto. 

Example: Let X = {a, b, c, d} and Y = {(1, 2, 3, 4} and let f : X → Y be given by f = 

{(a, 1), (b, 2), (c, 2), (d, 3)}. Is f
−1 

a function? 

Solution: f
−1 

= {(1, a), (2, b), (2, c), (3, d)}. Here, 2 has two distinct images b and c. 

Therefore, f
−1

 is not a function. 

Example: Let R be the set of real numbers and f : R → R be given by f = {(x, x
2
)| x ∈ 

R}. Is f
−1

 a function? 

Solution: The inverse of the given function is defined as f
−1

 = {(x
2
, 

x)| x ∈ R}. Therefore, it is not a function. 

Theorem: If f : X → Y and g : Y → X be such that g ◦ f = Ix and f ◦ g = Iy, then f 

and g are both invertible. Furthermore, f
−1 

= g and g
−1 

= f. 

Example: Let X = {1, 2, 3, 4} and f and g be functions from X to X given by f = {(1, 4), (2, 

1), (3, 

2), (4, 3)} and g = {(1, 2), (2, 3), (3, 4), (4, 1)}. Prove that f and g are inverses 

of each other. Solution: We check that 

 

(g ◦ f)(1) = g(f(1)) = g(4) 

= 1 

= Ix(1), (f ◦ 

g)(1) 

= f(g(1)) = f(2) = 1 = 
Ix(1). 

(g ◦ f)(2) = g(f(2)) = g(1) 

= 2 

= Ix(2), (f ◦ 

g)(2) 

= f(g(2)) = f(3) = 2 = 

Ix(2). 

(g ◦ f)(3) = g(f(3)) = g(2) = 3= 

Ix(3), 

(f ◦ 

g)(3) 

= f(g(3)) = f(4) = 3 = 

Ix(3). 

(g ◦ f)(4) = g(f(4)) = g(3) = 4= 
Ix(4), 

(f ◦ 
g)(4) 

= f(g(4)) = f(1) = 4 = 
Ix(4). 

Thus, for all x ∈ X, (g ◦ f)(x) = Ix(x) and (f ◦ g)(x) = Ix(x). Therefore g is inverse of f 

and f is inverse of g. 

Example: Show that the functions f(x) = x
3 

and g(x) = x
1/3 

for x ∈ R are inverses of one 

another. 

Solution: f : R → R is defined by f(x) = x
3 

; f: R → R is defined by g(x) = x
1/3

 

(f ◦ g)(x) = f(g(x)) = f(x
1/3

) = x
3(1/3) 

= 

x = Ix(x) i.e., (f ◦ g)(x) = Ix(x) 

and (g ◦ f)(x) = g(f(x)) = g(x
3

) = x
3(1/3) 

= 

x = Ix(x) i.e., (g ◦ f)(x) = Ix(x) 

Thus, f = g
−1 

or g = f
−1

 

 ., f and g are inverses of one other. 

***Example: f : R → R is defined by f(x) = ax + b, for a, b ∈ R and a ≠ 0. 
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Show that f is invertible and find the inverse of f. 
(i) First we shall show that f is one-to-one 

Let x1, x2 ∈ R such that f(x1) = f(x2) 

⇒  ax1 + b = ax2 + b 

⇒  ax1 = ax2 
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⇒ x1 = x2 

∴ f is one-to-one. 

 To show that f is onto. 

Let y ∈ R(codomain) such that y = f(x) for some x ∈ R. 

⇒  y = ax + b 

⇒  ax = y − b 

⇒ x = (y-b)/a 

Given y ∈ R(codomain), there exists an element x = (y-b)/a ∈ R such that f(x) = y. 

∴ f is onto 

⇒  f is invertible and f
−1

(x)= (x-

b)/a 

Example: Let f : R → R be given by f(x) = x
3 

− 2. Find f
−1

. 

(i) First we shall show that f is one-

to-one Let x1, x2 ∈ R such that 

f(x1) = f(x2) 

⇒ x
3

1 − 2 = x
3

2 − 

2 ⇒ x
3
1 = x

3
2 

⇒ x1 = x2 

∴ f is one-to-one. 

 To show that f is onto. 

⇒ y = x
3 

− 2 

⇒ x
3 

= y+2 

⇒ x= 

Given y ∈ R(codomain), there exists an 

element x = 3 

∴ f is onto 

⇒  f is invertible and f
−1

(x) = 

y  2 ∈ R such that f(x) = y. 

 

Floor and Ceiling functions: 
Let x be a real number, then the least integer that is not less than x is called the 

CEILING of x. The CEILING of x is denoted by ⌈x⌉. 

Examples: ⌈2.15⌉ = 3,⌈ √ 5⌉ = 3,⌈ −7.4⌉ = −7, ⌈−2⌉ = −2 

Let x be any real number, then the greatest integer that does not exceed x is called 

the Floor of x. The FLOOR of x is denoted by ⌊x⌋. 

3 y  2 

3 x  2 
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Examples: ⌊5.14⌋ = 5, ⌊ √5⌋ = 2,⌊ −7.6⌋ = −8,⌊6⌋ = 6,⌊ −3⌋ = −3 

Example: Let f and g abe functions from the positive real numbers to positive 

real numbers defined by f(x) = ⌊2x⌋, g(x) = x
2

. Calculate f ◦ g and g ◦ f. 

Solution: f ◦ g(x) = f(g(x)) =f(x
2
)=⌊2x

2⌋ 

g ◦ f(x) = g(f(x))=g(⌊2x⌋)=(⌊2x⌋)2 
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1 

1 1 2 3 

Recursive Function 

Total function: Any function f : N
n 

→ N is called total if it is defined for every 

n-tuple in N
n

. Example: f(x, y) = x + y, which is defined for all x, y ∈ N and 

hence it is a total function. 

Partial function: If f : D → N where D ⊆ N
n

, then f is called a 

partial function. Example: g(x, y) = x − y, which is defined for only 

x, y ∈ N which satisfy x ≥ y. 

Hence g(x, y) is partial. 
Initial functions: 

The initial functions over the set of natural numbers is given by 
 Zero function Z: Z(x) = 0, for all x. 
 Successor function S: S(x) = x + 1, for all x. 
 Projection function U 

n
: U 

n
(x , x , ..., x ) = x for all n tuples (x , x , ..., x ), 

1 ≤ 

i ≤ n. 
i i 1 2 n i 1 2 n 

Projection function is also called generalized identity 

function. For example, U 
1 

(x) = x for every x ∈ N is the 

identity function.1 

U 
2 

(x, y) = x, U 
3 

(2, 6, 9) = 2, U 
3 

(2, 6, 9) = 6, U 
3 

(2, 6, 9) = 9. 
Composition of functions of more than one variable: 
The operation of composition will be used to generate the other function. 

Let f1(x, y), f2(x, y) and g(x, y) be any three functions. Then the composition of g 

with f1 and f2 is defined as a function h(x, y) given by 

h(x, y) = g(f1(x, y), f2(x, y)). 

In general, let f1, f2, ..., fn each be partial function of m variables and g be a partial 

function of n 

variables. Then the composition of g with f1, f2, ..., fn produces a partial function h given 

by 

h(x1, x2, ..., xm) = g(f1(x1, x2, ..., xm), ..., fn(x1, x2, ...xm)). 

Note: The function h is total iff f1, f2, ..., fn and g are 
total. 

Example: Let f1(x, y) = x + y, f2(x, y) = xy + y
2 

and g(x, y) = xy. Then 

h(x, y) = g(f1(x, y), f2(x, y)) 

= g(x + y, xy + y
2
 

= (x + y)(xy + y
2

) 

 

Recursion: The following operation which defines a function f(x1, x2, ..., xn, y) of n + 1 

variables 

by using other functions g(x1, x2, .., xn) and h(x1, x2, ..., xn, y, z) of n and n + 

2 variables, respectively, is called recursion. 

f(x1, x2, ..., xn, 0) = g(x1, x2, ..., xn) 
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f(x1, x2, ..., xn, y + 1) = h(x1, x2, ..., xn, y, f(x1, x2, 

..., xn, y)) where y is the inductive variable. 

Primitive Recursive: A function f is said to be Primitive recursive iff it can be 

obtained from the initial functions by a finite number of operations of composition 

and recursion. 

 

***Example: Show that the function f(x, y) = x + y is primitive recursive. 

Hence compute the value of f(2, 4). 

Solution: Given that f(x, y) = x + y. 
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1 

3 

Here, f(x, y) is a function of two variables. If we want f to be defined by 

recursion, we need a function g of single variable and a function h of 

three variables. Now, 

 

f(x, y + 1) = x + (y + 1) 

= (x + y) + 1 

= f(x, y) + 1. 

 

Also, f(x, 0) = x. 

We define f(x, 0) 

as 

 

f(x, 0) = x =U 
1 

(x) 
= S(f(x, y)) 

=S(U 
3 

(x, y, f(x, y))) 

If we take g(x) = U1
1
(x) and h(x, y, z) = S(U3

3
(x, y, z)), we get f(x, 0) = g(x) and f(x, y + 

1) = 
h(x, y, z). 

Thus, f is obtained from the initial functions U1
1

, U3
3

, and S by applying 

composition once and recursion once. 

Hence f is primitive recursive. 

Here, 
f(2, 0) = 2 
f(2, 4) = S(f(2, 3)) 

=S(S(f(2, 2))) 

=S(S(S(f(2, 1)))) 

=S(S(S(S(f(2, 0))))) 

=S(S(S(S(2))))) 

=S(S(S(3))) 

=S(S(4)) 

=S(5) 

=6 

Example: Show that f(x, y) = x ∗ y is primitive recursion. 

Solution: Given that f(x, y) = x ∗ y. 

Here, f(x, y) is a function of two variables. If we want f to be defined by 

recursion, we need a function g of single variable and a function h of three 

variables. Now, f(x, 0) = 0 and 

 

 

We can 

write 

f(x, y + 1) = x ∗ (y + 1) = x ∗ y 

 f(x, y) + x 

f(x, 0) = 0 =Z(x) and 

f(x, y + 1) =f1(U3
3

(x, y, f(x, y)), U1
3

(x, y, f(x, y))) 

where f1(x, y) = x + y, which is primitive recursive. By taking g(x) = Z(x) = 0 and h 

defined by h(x, y, z) = f1(U3
3

(x, y, z), U1
3

(x, y, z)) = f(x, y + 1), we see that f 
defined by recursion. Since g and h are primitive recursive, f is primitive recursive. 
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Example: Show that f(x, y) = x
y 

is primitive recursive function. Solution: Note that 

x
0 

= 1 for x ≠ 0 and we put x
0 

= 0 for x = 0. 

Also, x
y+1 

= x
y ∗ x 

Here f(x, y) = x
y 

is defined as 

f(x, 0) = 1 = S(0) = S(Z(x)) 
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f(x, y + 1) = x ∗ f(x, y) 

 U1
3

(x, y, f(x, y)) ∗ U3
3

(x, y, f(x, y)) 

h(x, y, f(x, y) = f1(U1
3

(x, y, f(x, y)), U3
3
(x, y, f(x, y))) where f1(x, y) = x 

∗ y, which is primitive recursive. 

∴ f(x, y) is a primitive recursive function. 

 

Example: Consider the following recursive function definition: If x < y then f(x, y) = 0, if 

y ≤ x 

then f(x, y) = f(x − y, y) + 1. Find the value of f(4, 7), f(19, 6). 

 

Solution: 

Given 

f(x, y) 0;x < y 

f(x -y,y)+ 1 ; yx 

 

f(4, 7) = 0 [∴ 4 < 7] 

f(19, 6) = f(19 − 6, 6) + 1 

= f(13, 6) + 1 

f(13, 6) = f(13 − 6, 6) + 1 

= f(7, 6) + 1 

f(7, 6) = f(7 − 6, 6) + 1 

= f(1, 6) + 1 

=0 + 1 

=1 

f(13, 6) = f(7, 6) + 1 

=1 + 1 

=2 

f(19, 6) = 2 + 1 

= 3 

Example: Consider the following recursive function definition: If x < y then f(x, y) = 0, if 

y ≤ x 

then f(x, y) = f(x − y, y) + 1. Find the value of f(86, 17) 

 

Permutation Functions 
Definition: A permutation is a one-one mapping of a non-empty set onto itself. 

Let S = {a1, a2, ..., an} be a finite set and p is a permutation on S, we list the 

elements of S and the corresponding functional values of p(a1), p(a2), ..., p(an) 

in the following form: 
 a1 a2 . . . an  
 p(a ) p(a ) . . .  p(a ) 
 1 2 n  

If p : S → S is a bijection, then the number of elements in the given set is called 

the degree of its permutation. 
Note: For a set with three elements, we have 3! permutations. 
Example: Let S = {1, 2, 3}. The permutations of S are as follows: 

1 2  3 1 2  3 1 2  3 

={ 
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1 2
 3 

1 2
 3 

1 2
 3 

P1=  1 2 
 ; P2= 

 3 2 

 ; P3= 
 1 3 2 

 ; P4= 
 3 1 3 

 ; P5=  2 1 3 1  ; P6=   2 

 
  

    
  

 1 3 2 

Example: Let S = {1, 2, 3, 4} and p : S → S be given by f(1) = 2, f(2) = 1, f(3) = 4, 

f(4) = 3. Write this in permutation notation. 

Solution: The function can be written in permutation notation as given below: 
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1 2 3 4 
f=   

 2 1 4 3 
Identity Permutation: If each element of a permutation be replaced by 

itself, then such a permutation is called the identity permutation. 
 a1 a2 ... an  

Example: Let S = {a1, a2, , an}.then I= 
 

a a
 

...  is the identity permutation on S. a 

  1 2 n  

Equality of Permutations: Two permutations f and g of degree n are said to be 

equal if and only if f(a) = g(a) for all a ∈ S. 

Example: Let S = {1, 2, 3, 4} 
 

1 2 3 4  4 1 3 2 
f=  3 1  ;g=   2 4 4 3 2 1 

    
We have f(1) = g(1) = 3 

f(2) = g(2) = 1 

f(3) = g(3) = 2 

f(4) = g(4) = 4 

 

i.e., f(a) = g(a) for all a ∈ S. 

Product of Permutations: (or Composition of Permutations) 
   a b ... h    

a 
b ... h  

Let S={a,b,…h}and let  f (a) f (b) ...  ,g=  f (h) g(a) g(b) ...  g(h) 
    

We define the composite of f and g as follows: 
   a
 
b 

..

. 
h   a b ... h  

f ◦ g =  f (a) f (b) ...  o  f (h) g(a) g(b) ...  g(h) 
 
 a
 b 

    
... h  

= 
 

 f 
(g(a)) 

f 

(g(b)) 

..

. 

 
f (g(h)) 

Clearly, f ◦ g is a 
permutation. 

1 

 
2 3
 4 

 
1 2 3 4 

Example: Let S = {1, 2, 3, 4} and let f = 
 

 2 1 

 
4 3 

and g =  

 4 1 
 

2 3 
Find f ◦ g and g ◦ 

f in the permutation from. 
1 2 3
 4 

1
 
2 

3 4 

Solution: f ◦ g =  3 2  ;g ◦ f =   4 1 
  1
 3 

4 2 

Note: The product of two permutations of degree n need not be commutative. 

Inverse of a Permutation: 



MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE - MRCET Page 107   

 
 a1 a2 ... an  

If f is a permutation on S = {a1, a2, , an} such that f  
  

b
 
b
 

 .... b 

  1 2 n  

then there exists a permutation called the inverse f, denoted f
−1 

such that f ◦ f
−1 

= 

f
−1 

◦ f = 

I (the identity permutation on S) 
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1  b1 b2
 ..
. 

bn  

where 

f 

 
 

 
a1 

a 2

 ..

. 

 
a n  

 

1 
Example: If f = 
 

 2 

2 3 4
 −1 

 , then find 
f 

4 3 1 

, and show that f 

◦f
−1

 

= 

f
−1 

 

◦f = I 

 
−1  2 

4 3 1 1 
2 3 4 

Solution: f = 

 

 =   

 

 

f ◦f =  2  o  4 3 1 4 1  =  3 2  2 3 4 
  
 

 1  

 

Similarly, f
−1 

◦ f = I.⇒ f ◦ f
−1 

= f
−1 

◦ f = I. 

Cyclic Permutation: Let S = {a1, a2, ..., an} be a finite set of n symbols. A 

permutation f defined on S is said to be cyclic permutation if f is defined such that 

f(a1) = a2, f(a2) = a3, ...., f(an−1) = an and f(an) = a1. 
Example: Let S = {1, 2, 3, 4}. 

 

1 
Then 
 

 4 

2 3 4 
 =(1 4)(2 3) is a cyclic permutation. 

3 2 1 

 

Disjoint Cyclic Permutations: Let S = {a1, a2, ..., an}. If f and g are two cycles 

on S such that they have no common elements, then f and g are said to be 
disjoint cycles. 

Example: Let S = {1, 2, 3, 4, 5, 6}. 

If f = (1 4 5) and g = (2 3 6) then f and g are disjoint cyclic 

permutations on S. Note: The product of two disjoint cycles is 

commutative. 

1 
Example: Consider the permutation 
f =  

 2 

2 3 4 5 

3 4 5 1 

6 7 
 

7 6 

 
1 2 3 4   4 1 3 2

 

−1 1 2 3 4 1 2 3 4 1 
 

2 3 4
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The above permutation f can be written as f = (1 2 3 4 5)(6 7). Which is a product 

of two disjoint cycles. 

Transposition: A cyclic of length 2 is called a 

transposition. Note: Every cyclic permutation is the 

product of transpositions. 

1 
Example: f = 
 

 2 

2 3 4 

4 5 1 

5 
 =(1 2 4)(3 5) = (1 4)(1 2)(3 5). 

3 

 

Inverse of a Cyclic Permutation: To find the inverse of any cyclic permutation, 

we write its elements in the reverse order. 
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For example, (1 2 3 4)
−1 

= (4 3 2 1). 

Even and Odd Permutations: A permutation f is said to be an even 

permutation if f can be expressed as the product of even number of 

transpositions. 

A permutation f is said to be an odd permutation if f is expressed as the product of 

odd number of transpositions. 

Note: 

(i) An identity permutation is considered as an even permutation. 

(ii) A transposition is always odd. 

(iii). The product of an even and an odd permutation is odd. Similarly the 

product of an odd permutation and even permutations is odd. 

Example: Determine whether the following permutations are even or odd permutations. 

 

1 
(i) f=  

 2 

2 3 4 5 
 

4 3 1 5 
 

1 
(ii) g = 

 

 2 

1 
(iii) h=  

 4 

2 3 4 5 6 7 8 
 

5 7 8 6 1 4 3 

2 3 4 5 
 

3 1 2 5 

1 2 3 4 5 
Solution: (i). For f = 
 

 2 
4 3 1 

 = (1 2 4) = (1 4)(1 2) 
5 

 

⇒ f is an even permutation 
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1 
(ii). For g =  

 2 

= (1 2 5 6)(3 7 4 8) = (1 6)(1 5)(1 2)(3 8)(3 4)(3 7) 
⇒ g is an even permutation. 

 

1 
(iii) h=  

 4 

2 3 4 

3 1 2 

5 
 = (1 4 2 3) = (1 3)(1 2)(1 4) 

5 

 

Product of three transpositions 

 

⇒ h is an odd permutation. 

2 3 4 5 6 7 8

5 7 8 6 1 4 


3
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Lattices 

In this section, we introduce lattices which have important applications in the 

theory and design of computers. 

Definition: A lattice is a partially ordered set (L, ≤) in which every pair of 

elements a, b ∈ L has a greatest lower bound and a least upper bound. 

Example: Let Z
+ 

denote the set of all positive integers and let R denote the relation 
„division„ in 

Z
+

, such that for any two elements a, b ∈ Z
+

, aRb, if a divides b. Then (Z
+

, R) 

is a lattice in which the join of a and b is the least common multiple of a and 

b, i.e. 

a ∨ b = a ⊕ b = LCM of a and b, 

and the meet of a and b, i.e. a ∗ b is the greatest common divisor (GCD) of a and 

b i.e., 

a ∧ b = a ∗ b = GCD of a and b. 

We can also write a+b = a∨b = a⊕b=LCM of a and b and a.b = a∧b = a∗b=GCD of a 

and b. 

Example: Let n be a positive integer and Sn be the set of all divisors of n If n = 30, S30 

= {1, 2, 

3, 5, 6, 10, 15, 30}. Let R denote the relation division as defined in Example 1. 
Then (S30, R) is a Lattice see Fig: 

 

 

 

 

 

 

 

 

Example: Let A be any set and P (A) be its power set. The poset P (A), ⊆) is a lattice 

in which the meet and join are the same as the operations ∩ and ∪ on sets 

respectively. 

S = {a}, P (A) = {ϕ, {a}} 

 

S = {a, b}, P (A) = {ϕ, {a}, {a}, S}. 
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

Some Properties of Lattice 

Let (L, ≤) be a lattice and ∗ and ⊕ denote the two binary operation meet and join 

on (L, ≤). Then for any a, b, c ∈ L, we have 

(L1): a∗a = a, (L1)′ : a⊕a = a (Idempotent laws) 

(L2): b∗a = b∗a, (L2)
′ 
: a ⊕b = b + a (Commutative laws) 

(L3) : (a∗b)∗c = a∗(b∗c), (L3)′ : (a⊕b)⊕c = a⊕(b + c) (Associative laws) 

(L4) : a∗(a + b) = a,(L4)
′ 
: a⊕(a∗b) = a (Absorption laws). 

The above properties (L1) to (L4) can be proved easily by using definitions 

of meet and join. We can apply the principle of duality and obtain (L1)
′ 
to (L4)

′
. 

Theorem: Let (L, ≤) be a lattice in which ∗ and ⊕ denote the operations of 

meet and join respectively. For any a, ∈ L, a ≤ b ⇔ a ∗ b = a ⇔ a ⊕ b = b. 

Proof: We shall first prove that a ≤ b ⇔ a ∗ b = b. 

In order to do this, let us assume that a ≤ b. Also, we know that 

a ≤ a. Therefore a ≤ a ∗ b. From the definition of a ∗ b, we have 

a ∗ b ≤ a. 

Hence a ≤ b ⇒ a ∗ b = a. 

Next, assume that a ∗ b = a; but it is only possible if a ≤ b, that is, a ∗ b = 

a ⇒ a ≤ b. Combining these two results, we get the required 

equivalence. 

It is possible to show that a ≤ b ⇔ a ⊕ b = b in a similar manner. 

Alternatively, from a ∗ b = a, we have 

b ⊕ (a ∗ b) = b ⊕ a = a ⊕ b 

but b ⊕ (a ∗ b) = b 

Hence a ⊕ b = b follows from a ∗ b = a. 

By repeating similar steps, we can show that a ∗ b = a follows from 

a ⊕ b = b. Therefore a ≤ b ⇔ a ∗ b = a ⇔ a ⊕ b = b. 

Theorem: Let (L, ≤) be a lattice. Then b  c  
 a * b  a * c

 

a  b  a  c 

Proof: By above theorem a ≤ b ⇔ a ∗ b = a ⇔ a ⊕ b = b. 

To show that a ∗ b ≤ a ∗ c, we shall show that (a ∗ b) ∗ (a ∗ c) = a ∗ b 

(a ∗ b) ∗ (a ∗ c) = a ∗ (b ∗ a) ∗ c 

= a ∗ (a ∗ b) ∗ c 

= (a ∗ a) ∗ (b ∗ c) 
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= a ∗ (b ∗ c) 

= a ∗ b 

∴ If b ≤ c then a ∗ b ≤ a ∗ c.Next, let b ≤ c ⇒ b ⊕ c = c. 

To show that a ⊕ b ≤ a ⊕ c. It sufficient to show that (a ⊕ b) ⊕ (a ⊕ c) = a ⊕ 

c. 
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Consider,(a ⊕ b) ⊕ (a ⊕ c) = a ⊕ (b ⊕ a) ⊕ c 

= a ⊕ (a ⊕ b) ⊕ c 

= (a ⊕ a) ⊕ (b ⊕ c) 

= a ⊕ (b ⊕ c) 

= a ⊕ b 

∴ If b ≤ c then a ⊕ b ≤ a ⊕ c. 

Note: The above properties of a Lattice are called properties of Isotonicity. 
Lattice as an algebraic system: 

We now define lattice as an algebraic system, so that we can apply 

many concepts associated with algebraic systems to lattices. 

Definition: A lattice is an algebraic system (L, ∗,⊕) with two binary operation 

‗∗„and ‗⊕„ on L which are both commutative and associative and satisfy 

absorption laws. 
Bounded Lattice: 
A bounded lattice is an algebraic structure (L,,,0,1) sucha that (L,,) is a 

lattice, and the constants 0,1∈ L satisfy the following: 

1. for all x∈ L, x1=x and x1=1 

2. for all x∈ L, x0=0 and x0=x. 

The element 1 is called the upper bound, or top of L and the element 0 is called the 

lower bound or bottom of L. 

Distributive lattice: 

A lattice (L,∨,∧) is distributive if the following additional identity holds for all x, 

y, and z in L: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) 

Viewing lattices as partially ordered sets, this says that the meet peration preserves 
nonempty 

finite joins. It is a basic fact of lattice theory that the above condition is equivalent to its 

dual 

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for all x, y, and z in L. 

Example: Show that the following simple but significant lattices are not distributive. 

Solution a) To see that the diamond lattice is not distributive, use the middle 

elements of the lattice: a ∧ (b ∨ c) = a ∧ 1 = a, but (a ∧ b) ∨ (a ∧ c) = 0 ∨ 

0 = 0, and a ≠0. 

Similarly, the other distributive law fails for these three elements. 

b) The pentagon lattice is also not distributive 
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Example: Show that lattice is not a distributive lattice. 

Sol. A lattice is distributive if all of its elements follow distributive property so let we 

verify the distributive property between the elements n, l and m. 
GLB(n, LUB(l, m)) = GLB(n, p) [∴ LUB(l, m) = p] 

= n (LHS) 
also LUB(GLB(n, l), GLB(n, m)) = LUB(o, n); [∴ GLB(n, l) = o and GLB(n, m) = n] 

= n (RHS) 
so LHS = RHS. 

But GLB(m, LUB(l, n)) = GLB(m, p) [∴ LUB(l, n) = p] 
= m (LHS) 

also LUB(GLB(m, l), GLB(m, n)) = LUB(o, n); [∴ GLB(m, l) = o and GLB(m, n) = n] 
= n (RHS) 

Thus, LHS ≠ RHS hence distributive property doesn„t hold by the lattice so 

lattice is not distributive. 

Example: Consider the poset (X, ≤ ) where X = {1, 2, 3, 5, 30} and the partial ordered 

relation ≤ 

is defined as i.e. if x and y ∈X then x ≤ y means ‗x divides y„. Then show that 

poset (I+, ≤) is a lattice. 
Sol. Since GLB(x, y) = x ∧ y = lcm(x, y) 
and LUB(x, y) = x ∨ y = gcd(x, y) 
Now we can construct the operation table I and table II for GLB and LUB 

respectively and the Hasse diagram is shown in Fig. 

Test for distributive lattice, i.e., 

GLB(x, LUB(y, z)) = LUB(GLB(x, y), GLB(x, z)) 

Assume x = 2, y = 3 and z = 5, then 

RHS:GLB(2, LUB(3, 5)) = GLB(2, 30) = 2 

LHS: LUB(GLB(2, 3), GLB(2, 5)) = LUB(1, 1) = 1 
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SinceRHS ≠ LHS, hence lattice is not a distributive lattice. 
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Complemented lattice: 

A complemented lattice is a bounded lattice (with least element 0 and greatest 

element 1), in which every element a has a complement, i.e. an element b 

satisfying a ∨ b = 1 and a ∧ b = 0. Complements need not be unique. 

Example: Lattices shown in Fig (a), (b) and (c) are complemented lattices. 

Sol. 

For the lattice (a) GLB(a, b) = 0 and LUB(x, y) = 1. So, the complement a is b 

and vise versa. Hence, a complement lattice. 

 

For the lattice (b) GLB(a, b) = 0 and GLB(c, b) = 0 and LUB(a, b) = 1 and 

LUB(c, b) = 1; so both a and c are complement of b. 

Hence, a complement lattice. 

 

In the lattice (c) GLB(a, c) = 0 and LUB(a, c) = 1; GLB(a, b) = 0 and 

LUB(a, b) = 1. So, complement of a are b and c. 

Similarly complement of c are a and b also a and c are 

complement of b. Hence lattice is a complement lattice. 

Previous Questions 
1. a) Let R be the Relation R= {(x,y)/ x divides y )} . Draw the Hasse diagram? 

b) Explain in brief about lattice? 

c) Define Relation? List out the Operations on Relations 

2. Define Relation? List out the Properties of Binary operations? 

3. Let the Relation R be R={(1,2) ,(2,3),(3,3)} on the set A= {1,2,3}. What is 

the Transitive Closure of R? 

4. Explain in brief about Inversive and Recursive functions with examples? 

5. Prove that (S, ≤) is a Lattice, where S= {1,2,5,10} and ≤ is for divisibility. 

Prove that it is also a Distributive Lattice? 

6. Prove that (S,≤) is a Lattice, where S= {1,2,3,6} and ≤ is for divisibility. Prove 

that it is also a Distributive Lattice? 

7. Let A be a given finite set and P(A) its power set. Let  be the inclusion 

relation on the elements of P(A). Draw Hasse diagrams of (P(A),  ) for 

A={a}; A={a,b}; A={a,b,c} and A={a,b.c.d}. 

8. Let Fx be the set of all one-to-one onto mappings from X onto X, where 

X={1,2,3}. Find all the elements of Fx and find the inverse of each element. 

9. Show that the function f(x) = x+y is primitive recursive. 

10. Let X={2,3,6,12,24,36) and a relation ≤„ be such that x≤ _if x divides y. 



MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE - MRCET Page 120   

Draw the Hasse diagram of (x,≤). 

11. If A={1,2,3,4} and P={{1,2},{3},{4}} is a partition of A, find the equivalence relation 
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

determined by P. 

12. Let X={1,2,3} and f, g, h and s be functions from X to X given by f={<1,2>, 

<2,3>, <3,1>} g={<1,2>, <2,1>, <3,3>} h={<1,1>, <2,2>, <3,1>} and 

s={<1,1>, <2,2>, <3,3>}. Find fog, fohog, gos, fos. 

13. Let X={1,2,3,4} and R={<1,1>, <1,4>, <4,1>, <4,4>, <2,2>, <2,3>, <3,2>, <3,3>}. 

Write the 

matrix of R and sketch its graph. 

14. Let X = {a,b,c,d,e} and let C = {{a,b},{c},{d,e}}. Show that the partition 

C defines an equivalence relation on X. 
15. Show that the function f(x)= x / 2;

 
when x 
iseven 

is primitive recursive. 

 
(x 1) / 2; when x is odd 

16. If A={1,2,3,4} and R,S are relations on A defined by R={(1,2),(1,3),(2,4),(4,4)} 

S={(1,1),(1,2),(1,3),(1,4),(2,3),(2,4)} find R o S, S o R, R
2
, S

2
, write down there 

matrices. 

17. Determine the number of positive integers n where 1≤n≤2000 and n is not 

divisible by2,3 or 5 but is divisible by 7. 

18. Determine the number of positive integers n where 1≤n≤100 and n is not divisible 

by2,3 or 5. 

19. Which elements of the poset /({2,4,5,10,12,20,25},/) are maximal and which are 

minimal? 

20. Let X={(1,2,3} and f,g,h and s be functions from X to X given by 

f={(1,2),(2,3),(3,1)}, g={(1,2),(2,1),(3,3)}, h={(1,1),(2,2),(3,1) and 

s={(1,1),(2,2),(3,3)}. 

 

 

Multiple choice questions 

 

1. A  is an ordered collection of objects. 

a) Relation b) Function c) Set d) 

Proposition Answer: c 

2. The set O of odd positive integers less than 10 can be expressed by  . 

a) {1, 2, 3}      b) {1, 3, 5, 7, 9} c) {1, 2, 5, 9} d) {1, 5, 7, 9, 

11} Answer: b 

3. Power set of empty set has exactly  subset. 

a) One b) Two c) Zero d) 

Three Answer: a 

4. What is the Cartesian product of A = {1, 2} and B = {a, b}? 

a) {(1, a), (1, b), (2, a), (b, b)} b) {(1, 1), (2, 2), (a, a), (b, b)} 

c) {(1, a), (2, a), (1, b), (2, b)} d) {(1, 1), (a, a), (2, a), (1, b)} 

Answer: c 

5. The Cartesian Product B x A is equal to the Cartesian product A x B. Is it True or 

False? 

a) True b) 

False Answer: b 
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6. What is the cardinality of the set of odd positive integers 

less than 10? a) 10 b) 5 c) 3 d) 20 

Answer: b 

7. Which of the following two sets are equal? 

a) A = {1, 2} and B = {1} b) A = {1, 2} and B = {1, 2, 3} 

c) A = {1, 2, 3} and B = {2, 1, 3} d) A = {1, 2, 4} and B = {1, 2, 3} 

Answer: c 

8. The set of positive integers is  . 

a) Infinite b) Finite c) Subset d) 

Empty Answer: a 
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= ØThen (pick the TRUE statement) 

A.R is relexive and transitive B.R is symmetric and not transitive 
Option: B 

14. Consider the divides relation, m | n, on the set A = {2, 3, 4, 5, 6, 7, 8, 9, 10}. 

The cardinality of the covering relation for this partial order relation (i.e., the 

number of edges in the Hasse diagram) is 
(a) 4 (b) 6 (c) 5 (d) 8 (e) 7 
Ans:e 

15. Consider the divides relation, m | n, on the set A = {2, 3, 4, 5, 6, 7, 8, 9, 10}. 

Which of the following permutations of A is not a topological sort of this 

partial order relation? 

(a) 7,2,3,6,9,5,4,10,8 (b) 2,3,7,6,9,5,4,10,8 

(c) 2,6,3,9,5,7,4,10,8 (d) 3,7,2,9,5,4,10,8,6 

(e) 3,2,6,9,5,7,4,10,8 

Ans:c 

16. Let A = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} and consider the divides 

relation 

on A. Let C denote the length of the maximal chain, M the number of maximal 

elements, and m the number of minimal elements. Which is true? 

(a) C = 3, M = 8, m = 6      (b) C = 4, M = 8, 

m = 6 (c) C = 3, M = 6, m = 6     (d) C = 4, 

M = 6, m = 4 (e) C = 3, M = 6, m = 4 

Ans:a 

17. What is the smallest N > 0 such that any set of N nonnegative integers 

must have two distinct integers whose sum or difference is divisible by 

1000? 
(a) 502 (b) 520 (c) 5002 (d) 5020 (e) 52002 
Ans:a 

9. What is the Cardinality of the Power set of the set {0, 1, 2}. 

a) 8 b) 6 c) 7 d) 9 

Answer: a 

10. The members of the set S = {x | x is the square of an integer and x < 100} is----- 

a) {0, 2, 4, 5, 9, 58, 49, 56, 99, 12} b) {0, 1, 4, 9, 16, 25, 36, 49, 64, 81} 

c) {1, 4, 9, 16, 25, 36, 64, 81, 85, 99} d) {0, 1, 4, 9, 16, 25, 36, 49, 64, 121} 

Answer: b 

11. Let R be the relation on the set of people consisting of (a,b) where aa is the parent of b. Let S 

be the relation on the set of people consisting of (a,b) where a and b are siblings. What are S∘ R 

and R∘ S? 

A) (a,b) where a is a parent of b and b has a sibling; (a,b) where a is the aunt or uncle of b. 
B) (a,b) where a is the parent of b and a has a sibling; (a,b) where a is the aunt or uncle of b. 

C) (a,b) where a is the sibling of b's parents; (a,b) where aa is b's niece or nephew. 

D) (a,b) where a is the parent of b; (a,b) where a is the aunt or uncle of b. 

12. On the set of all integers, let (x,y)∈R(x,y)∈R iff xy≥1xy≥1. Is relation R reflexive, 
symmetric, antisymmetric, transitive? 

A) Yes, No, No, Yes B) No, Yes, No, Yes 

C) No, No, No, Yes D) No, Yes, Yes, Yes E) No, No, Yes, No 

C.R is an equivalence relation D.R is not relexive and not symmetric 

 13. Let R be a non-empty relation on a collection of sets defined by ARB if and only if A∩ B 
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18. Let R and S be binary relations on a set A. Suppose that R is reflexive, 

symmetric, and transitive and that S is symmetric, and transitive but is not 

reflexive. Which statement is always true for any such R and S? 
(a) R ∪ S is symmetric but not reflexive and not transitive. 
(b) R ∪ S is symmetric but not reflexive. 
(c) R ∪ S is transitive and symmetric but not reflexive 
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(d) R ∪ S is reflexive and symmetric. (e) R ∪ S is symmetric 
but not transitive. Ans:d 

19. Let R be a relation on a set A. Is the transitive closure of R always equal to 

the transitive closure of R
2
? Prove or disprove. 

Solution: Suppose A = {1, 2, 3} and R = {(1, 2),(2, 3)}. Then R2 = {(1, 3)}. 

Transitive closure of R is R∗ = {(1, 2),(2, 
3),(1, 3)}. Transitive closure of R

2
 is {(1, 

3)}. 

They are not always equal. 

20. Suppose R1 and R2 are transitive relations on a set A. Is the relation R1 ∪ 
R2 necessariy a transitive relation? Justify your answer. 

Solution: No. {(1, 2)} and {(2, 3)} are each transitive relations, but their union 

{(1, 2),(2, 3)} is not transitive. 

21. Let D30 = {1, 2, 3, 4, 5, 6, 10, 15, 30} and relation I be partial ordering on D30. 

The all lower bounds of 10 and 15 respectively are 

A.1,3 B.1,5 C.1,3,5 D.None of these Option: B 

22. Hasse diagrams are drawn for 

A.partially ordered sets B.lattices C.boolean Algebra D.none of 

these Option: D 

23. A self-complemented, distributive lattice is called 

A.Boolean algebra B.Modular lattice C.Complete lattice D.Self dual 

lattice Option: A 

24. Let D30 = {1, 2, 3, 5, 6, 10, 15, 30} and relation I be a partial ordering on 

D30. The lub of 10 and 15 respectively is 

A.30 B.15 C.10 D.6 Option: A 

25: Let X = {2, 3, 6, 12, 24}, and ≤ be the partial order defined by X ≤ Y if X 

divides Y. Number of edges in the Hasse diagram of (X, ≤ ) is 

A.3 B.4 C.5 D.None of 

these Option: B 

26. Principle of duality is defined as 

A.≤ is replaced by ≥ B.LUB becomes GLB 

C. all properties are unaltered when ≤ is replaced by ≥ 

D. all properties are unaltered when ≤ is replaced by ≥ other than 0 and 

1 element. Option: D 

27. Different partially ordered sets may be represented by the same Hasse 

diagram if they are A.same B.lattices with same order

 C.isomorphic D.order-isomorphic Option: D 

28. The absorption law is defined as 

A.a  * ( a * b ) = b B.a * ( a ⊕ b ) = b C.a * ( a * b ) = a ⊕ bD.a * ( a ⊕ 
b ) = a Option: D 

29. A partial order is deined on the set S = {x, a1, a2, a3,...... an, y} as x ≤ a i for all i and ai 

≤ y for all i, where n ≥ 1. Number of total orders on the set S which 

contain partial order ≤ is 

A.1 B.n C.n + 2 D.n ! Option: D 

30. Let L be a set with a relation R which is transitive, antisymmetric and 
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reflexive and for any two elements a, b ∈ L. Let least upper bound lub (a, 

b) and the greatest lower bound glb (a, b) exist. Which of the following 

is/are TRUE ? 

 is a Poset  B.L is a boolean algebra C.L is a lattice D.none of 

these Option: C 
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ALGEBRAIC STRUCTURES 

Algebraic Systems with One Binary 

Operation Binary Operation 

Let S be a non-empty set. If f : S × S → S is a mapping, then f is 

called a binary operation or binary composition in S. 

The symbols +, ·, ∗, ⊕ etc are used to denote binary operations on a set. 

 For a, b ∈ S ⇒ a + b ∈ S ⇒ + is a binary operation in S. 

 For a, b ∈ S ⇒ a · b ∈ S ⇒ · is a binary operation in S. 

 For a, b ∈ S ⇒ a ◦ b ∈ S ⇒ ◦ is a binary operation in S. 

 For a, b ∈ S ⇒ a ∗ b ∈ S ⇒ ∗ is a binary operation in S. 

 This is said to be the closure property of the binary operation and the set S 
is said to be closed with respect to the binary operation. 

Properties of Binary Operations 

Commutative: ∗ is a binary operation in a set S. If for a, b ∈ S, a ∗ b = b ∗ a, then ∗ is 

said to be commutative in S. This is called commutative law. 

Associative: ∗ is a binary operation in a set S. If for a, b, c ∈ S, (a∗b)∗c = a∗(b∗c), then 

∗ is said to be associative in S. This is called associative law. 

Distributive: ◦, ∗ are binary operations in S. If for a, b, c ∈ S, (i) a ◦ (b ∗ c) = (a ◦ b) ∗ (a ◦ 

c), (ii) 

(b ∗ c) ◦ a = (b ◦ a) ∗ (c ◦ a), then ◦ is said to be distributive w.r.t the 

operation ∗. Example: N is the set of natural numbers. 

(i)  +, · are binary operations in N, since for a, b ∈ N, a + b ∈ N and a · 

b ∈ N. In other words N is said to be closed w.r.t the operations + 

and ·. 

(ii) +, · are commutative in N, since for a, b ∈ N, a + b = b + a and a · b = b · a. 

(iii) +, · are associative in N, since for a, b, c ∈ N, 

a + (b + c) = (a + b) + c and a · (b · c) = (a · b) · c. 

(iv) is distributive w.r.t the operation + in N, since for a, b, c ∈ N, a · (b + c) 

= a · b + a · c and (b + c) · a = b · a + c · a. 
(v) The operations subtraction (−) and division (÷) are not binary operations in N, 

since 
for 3, 5 ∈ N does not imply 3 − 5 ∈ N and 

3
5 ∈ N. Example: A is the set of even 

integers. 

(i) +, · are binary operations in A, since for a, b ∈ A, a + b ∈ A and a · b ∈ A. 

(i) +, · are commutative in A, since for a, b ∈ A, a + b = b + a and a · b = b · a. 

(ii) +, · are associative in A, since for a, b, c ∈ A, 

a + (b + c) = (a + b) + c and a · (b · c) = (a · b) · c. 
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(iv) · is distributive w.r.t the operation + in A, since for a, b, c ∈ A, a · 

(b + c) = a · b + a · c and (b + c) · a = b · a + c · a. 
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Example: Let S be a non-empty set and ◦ be an operation on S defined by a ◦ b = 

a for a, b ∈ S. Determine whether ◦ is commutative and associative in S. 

Solution: Since a ◦ b = a for a, b ∈ S and b ◦ a = b for a, b ∈ S. 

⇒ a ◦ b = ̸ b ◦ a. 

∴ ◦ is not commutative in S. 

Since (a ◦ b) ◦ c = a ◦ c = a 

a ◦ (b ◦ c) = a ◦ b = a for a, b, c ∈ S. 

∴ ◦ is associative in S. 

Example: ◦ is operation defined on Z such that a ◦ b = a + b − ab for a, b ∈ Z. Is the 

operation ◦ a binary operation in Z? If so, is it associative and 

commutative in Z? 

Solution: If a, b ∈ Z, we have a + b ∈ Z, ab ∈ Z and a + b − ab ∈ Z. 

⇒ a ◦ b = a + b − ab ∈ Z. 

∴ ◦ is a binary operation in Z. 

⇒ a ◦ b = b ◦ a. 

∴ ◦ is commutative in Z. 

No

w 

 

 

and 

 

(a ◦ b) ◦ c = (a ◦ b) + c − (a ◦ b)c 

= a + b − ab + c − (a + b − ab)c 

=a + b − ab + c − ac − bc + abc 

 

a ◦ (b ◦ c) = a + (b ◦ c) − a(b ◦ c) 

=a + b + c − bc − a(b + c − bc) 

=a + b + c − bc − ab − ac + abc 

=a + b − ab + c − ac − bc + abc 

⇒ (a ◦ b) ◦ c = a ◦ (b ◦ c). ∴ 
◦ is associative in Z. 

Example: Fill in blanks in the following composition table so that
′
◦
′
is associative in S = 

{a,b,c,d}. 

◦ a b c d 

a a b c d 

b b a c d 

c c d c d 

d     

Solution: d ◦ a = (c ◦ b) ◦ a[∵ c ◦ b = d] 

=c ◦ (b ◦ a) [∵ ◦ is associative] 

=c ◦ b 
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=d 

d ◦ b = (c ◦ b) ◦ b = c ◦ (b ◦ b) = c ◦ 

a = c. d ◦ c = (c ◦ b) ◦ c = c ◦ (b ◦ c) 

= c ◦ c = c. 
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d ◦ d = (c ◦ b) ◦ (c ◦ 

b) 

=c ◦ (b ◦ c) ◦ b 

=c ◦ c ◦ b 

=c ◦ (c ◦ b) 

=c ◦ d 

=d 

Hence, the required composition table is 

 

◦ a b c d 

a a b c d 

b b a c d 

c c d c d 

d d c c d 

 

Example: Let P (S) be the power set of a non-empty set S. Let ∩ be an operation 

in P (S). Prove that associative law and commutative law are true for the 

operation in P (S). 

 

Solution: P(S)= Set of all possible 

subsets of S. Let A,B ∈ P(S). 
Since A ⊆ S, B ⊆ S ⇒ A ∩ B ⊆ S ⇒ A ∩ B ∈ P(S). 

∴ ∩ is a binary operation in P (S). 

Also A ∩ B = B ∩ A 

∴ ∩ is commutative in P (S). 

Again A ∩ B, B ∩ C, (A ∩ B) ∩ C and A ∩ (B ∩ C) are subsets of S. 

 

∴ (A ∩ B) ∩ C, A ∩ (B ∩ C) ∈ P (S). 

Since (A ∩ B) ∩ C = A ∩ (B ∩ C) 

∴ ∩ is associative in P (S). 

Algebraic Structures 
Definition: A non-empty set G equipped with one or more binary operations is called an 
algebraic structure or an algebraic system. 

If ◦ is a binary operation on G, then the algebraic structure is 

written as (G, ◦). Example: (N, +), (Q, −), (R, +) are algebraic 

structures. 

Semi Group 

Definition: An algebraic structure (S, ◦) is called a semi group if the binary 

oper-ation ◦ is associative in S. 

That is, (S, ◦) is said to be a semi group if 

(i) a, b ∈ S ⇒ a ◦ b ∈ S for all a, b ∈ S 

(ii) (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, 
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c ∈ S. Example: 

1. (N, +) is a semi group. For a, b ∈ N ⇒ a + b ∈ N and a, b, c ∈ N ⇒ (a + b) + c 

=a+ (b + c). 2. (Q, −) is not a semi group. For 5,3/2 , 1 ∈ Q does not imply (5 – 

3/2 ) −1 = 5 −(3/2 −1). 

3. (R, +) is a semi group. For a, b ∈ R ⇒ a + b ∈ R and a, b, c ∈ R ⇒ (a + b) + c = a+ (b + 

c). 
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Example: The operation ◦ is defined by a ◦ b = a for all a, b ∈ S. Show that (S, ◦) is 

a semi group. Solution: Let a, b ∈ S ⇒ a ◦ b = a ∈ S. 

∴ ◦ is a binary operation in S. Let a, b, c ∈ S, a ◦ (b ◦ c) = a ◦ b = a 

(a ◦ b) ◦ c = a ◦ c = a. 

⇒ ◦ is associative in S. 

∴ (S, ◦) is a semi group. 

Example: The operation ◦ is defined by a ◦ b = a + b − ab for all a, b ∈ Z. Show 

that (Z, ◦) is a semi group. 

Solution: Let a, b ∈ Z ⇒ a ◦ b = a + b − ab ∈ Z. 

∴ ◦ is a binary operation in 

Z. Let a, b, c ∈ Z. 

 

 

 

 

 

abc ⇒ (a ◦ b) ◦ c = a ◦ (b 

◦ c). 

(a ◦ b) ◦ c = (a + b − ab) ◦ c 

=a + b − ab + c − (a + b − ab)c 

=a + b + c − ab − bc − ac + abc 

 

a ◦ (b ◦ c) = a ◦ (b + c − bc) 

=a + (b + c − bc) − a(b + c − bc) 

=a + b + c − bc − ab − ac + 

⇒ ◦ is associative in Z. ∴ (Z, ◦) is semi group. 

Example: (P (S), ∩) is a semi group, where P (S) is the power set of a 

non-empty set S. Solution: P (S)= Set of all possible subsets of S. 

Let A, B ∈ P (S). 

Since A ⊆ S, B ⊆ S ⇒ A ∩ B ⊆ S ⇒ A ∩ B ∈ P (S). 

∴ ∩ is a binary operation in P (S). Let A, B, C ∈ P (S). 

∴ (A ∩ B) ∩ C, A ∩ (B ∩ C) ∈ P (S). Since (A ∩ B) ∩ C 

= A ∩ (B ∩ C) 

∴ ∩ is associative in P (S). 

Hence (P (S), ∩) is a semi 

group. 

Example: (P (S), ∪) is a semi group, where P (S) is the power set of a non-

empty set S. Solution: P (S)= Set of all possible subsets of S. 

Let A, B ∈ P (S). 

Since A ⊆ S, B ⊆ S ⇒ A ∪ B ⊆ S ⇒ A ∪ B ∈ P (S). 

∴ ∪ is a binary operation in P (S). Let A, B, C ∈ P (S). 

∴ (A ∪ B) ∪ C, A ∪ (B ∪ C) ∈ P (S). Since (A ∪ B) ∪ C = A ∪ (B ∪ C) 
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∴ ∪ is associative in P (S). 

Hence (P (S), ∪) is a semi 

group. 
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Example: Q is the set of rational numbers, ◦ is a binary operation defined on Q such that 

a ◦ b = a 

− b + ab for a, b ∈ Q. Then (Q, ◦) is not a semi group. 

Solution: For a, b, c ∈ Q, 

(a ◦ b) ◦ c = (a ◦ b) − c + (a ◦ b)c 

=a − b + ab − c + (a − b + ab)c 

=a − b + ab − c + ac − bc 

+ abc a ◦ (b ◦ c) = a − (b ◦ c) + a(b ◦ c) 

=a − (b − c + bc) + a(b − cbc) 
=a − b + c − bc + ab − ac + abc. 

Therefore, (a ◦ b) ◦ c = ̸ a ◦ (b ◦ c). 

Example: Let (A, ∗) be a semi group. Show that for a, b, c in A if a ∗ c = c ∗ a and b 

∗ c = c ∗ b, then (a ∗ b) ∗ c = c ∗ (a ∗ b). 

Solution: Given (A, ∗) be a semi group, a ∗ c = c ∗ a and b ∗ c 

= c ∗ b. Consider 

(a ∗ b) ∗ c = a ∗ (b ∗ c) [∵ A is seme group] 

=a ∗ (c ∗ b) [∵ b ∗ c = c ∗ b] 

=(a ∗ c) ∗ b [∵ A is seme group] 

=(c ∗ a) ∗ b [∵ a ∗ c = c ∗ a] 

=c ∗ (a ∗ b) [∵ A is seme group]. 

Homomorphism of Semi-Groups 

Definition: Let (S, ∗) and (T, ◦) be any two semi-groups. A mapping f : S → T such that for 

any 

two elements a, b ∈ S, f(a ∗ b) = f(a) ◦ f(b) is called a semi-group homomorphism. 

Definition: A homomorphism of a semi-group into itself is called a semi-group en-

domorphism. Example: Let (S1, ∗1), (S2, ∗2) and (S3, ∗3) be semigroups and f : S1  

→ S2  and g : S2  → S3  be homomorphisms. Prove that the mapping of g ◦ f : S1 

→ S3 is a semigroup homomorphism. 

Solution: Given that (S1, ∗1), (S2, ∗2) and (S3, ∗3) are three semigroups 

and f : S1 → S2 and g : S2 → S3 be homomorphisms. 

Let a, b be two elements of S1. 

(g ◦ f)(a ∗1 b) = g[f(a ∗1 b)] 

= g[f(a) ∗2 f(b)] (∵ f is a homomorphism) 

= g(f(a)) ∗3 g(f(b)) (∵ g is a homomorphism) 

=(g ◦ f)(a) ∗3 (g ◦ f)(b) 

∴ g ◦ f is a homomorphism. 
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Identity Element: Let S be a non-empty set and ◦ be a binary operation on S. If 

there exists an element e ∈ S such that a ◦ e = e ◦ a = a, for a ∈ S, then e is called 

an identity element of S. 
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Exampl

e: 

 

(i) In the algebraic system (Z, +), the number 0 is an identity element. 

(ii) In the algebraic system (R, ·), the number 1 is an identity element. 

Note: The identity element of an algebraic system is unique. 

 

Monoid 

Definition: A semi group (S, ◦) with an identity element with respect to the 

binary operation ◦ is known as a monoid. i.e., (S, ◦) is a monoid if S is a non-

empty set and ◦ is a binary operation in S such that ◦ is associative and there 

exists an identity element w.r.t ◦. 

Example: 

1. (Z, +) is a monoid and the identity is 0. 

2. (Z, ·) is a monid and the identity is 1. 

 

Monoid Homomorphism 

Definition: Let (M, ∗) and (T, ◦) be any two monoids, em and et denote the 

identity elements of (M, ∗) and (T, ◦) respectively. A mapping f : M → T such 

that for any two elements a, b ∈ M, 

f(a ∗ b) = f(a) ◦ f(b) and 

f(em) = et 
is called a monoid homomorphism. 

 

Monoid homomorphism presents the associativity and identity. It also preserves 

commutative. If a ∈ M is invertible and a
−1 ∈ M is the inverse of a in M, then 

f(a
−1

) is the inverse of f(a), i.e., f(a
−1

) = [f(a)]
−1

. 

Sub Semi group 

Let (S, ∗) be a semi group and T be a subset of S. Then (T, ∗) is called a sub semi 

group of (S, 

∗) whenever T is closed under ∗. i.e., a ∗ b ∈ T, for all a, b ∈ T . 

 

Sub Monoid 

Let (S,∗) be a monoid with e is the identity element and T be a non-empty subset 

of S. Then 

(T, ∗) is the sub monoid of (S, ∗) if e ∈ T and a ∗ b ∈ T , whenever a, b ∈ T . Example: 

1. Under the usual addition, the semi group formed by positive integers is a sub 

semi group of all integers. 

2. Under the usual addition, the set of all rational numbers forms a monoid. We 
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denote it (Q, 

+). The monoid (Z, +) is a submonid of (Q, +). 

3. Under the usual multiplication, the set E of all even integers forms a semi group. 

This semi group is sub semi group of (Z, ·). But it is not a submonoid of (Z, ·), 

because 1≠ E. 

 

Example: Show that the intersection of two submonoids of a monoid is a 

monoid. Solution: Let S be a monoid with e as the identity, and S1 and S2 be 

two submonoids of S. Since S1 and S2 are submonoids, these are monoids. 

Therefore e ∈ S1 and e ∈ S2. 
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Since S1 ∩S2 is a subset of S, the associative law holds in S1 ∩S2, because it holds 

in S. Accordingly S1 ∩ S2 forms a monoid with e as the identity. 

Invertible Element: Let (S,◦) be an algebraic structure with the identity element e 

in S w.r.t 

◦. An element a ∈ S is said to be invertible if there exists an element x∈ S such 

that a ◦ x = x ◦ a = e. 
Note: The inverse of an invertible element is unique. 
From the composition table, one can conclude 

1. Closure Property: If all entries in the table are elements of S, then S closed under 

◦. 

2. Commutative Law: If every row of the table coincides with the 

corresponding column, then ◦ is commutative on S. 

3. Identity Element: If the row headed by an element a of S coincides with the top 

row, then a 

is called the identity element. 

4. Invertible Element: If the identity element e is placed in the table at the 

intersection of the row headed by 
′
a

′ 
and the column headed by 

′
b

′
, then b

−1 
= 

a and a
−1 

= b. 

Example: A = {1, ω, ω
2
}. 

· 1 ω ω
2 

1 1 ω ω2 

ω ω ω
2 1 

ω2 ω2 1 ω 

From the table we conclude that 

1. Closure Property: Since all entries in the table are elements of A. So, 

closure property is satisfied. 

2. Commutative Law: Since 1
st

, 2
nd 

and 3
rd 

rows coincides with 1
st

, 2
nd 

and 

3
rd

columns 

respectively. So multiplication is commutative on A. 

3. Identity Element: Since row headed by 1 is same as the initial row, so 1 

is the identity element. 

4. Inverses: Clearly 1
−1 

= 1, ω
−1 

= ω
2

, (ω
2

)
−1 

= ω. 

 

Groups 

Definition: If G is a non-empty set and ◦ is a binary operation defined on G 

such that the following three laws are satisfied then (G, ◦) is a group. 

Associative Law: For a, b, c ∈ G, (a ◦ b) ◦ c = a ◦ (b ◦ c) 
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Identity Law: There exists e ∈ G such that a ◦ e = a = e ◦ a for every a ∈ G, e 

is called an identity element in G. 

Inverse Law: For each a ∈ G, there exists an element b ∈ G such that a◦b = b◦a = 

e, b is called an inverse of a. 
Example: The set Z of integers is a group w.r.t. usual addition. 

(i). For a, b ∈ Z ⇒ a + b ∈ Z 

(ii). For a, b, c ∈ Z, (a + b) + c = a + (b + c) 

(iii). 0 ∈ Z such that 0 + a = a + 0 = a for each a ∈ G 
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∴ 0 is the identity element in Z. 

(iv). For a ∈ Z, there exists −a ∈ Z such that a + (−a) = (−a) + a = 0. 

∴ −a is the inverse of a. (Z, +) is a 

group. 

Example: Give an example of a monoid which is not a group. 

Solution: The set N of natural numbers w.r.t usual multiplication is 

not a group. (i). For a, b ∈ N ⇒ a · b. 

(ii). For a, b, c ∈ N, (a · b) · c = a · (b · c). 

(iii). 1 ∈ N such that 1 · a = a · 1 = a, for all a ∈ N. 

∴ (N, ·) is a monoid. 

(iv). There is no n ∈ N such that a · n = n · a = 1 for a ∈ N. 

∴ Inverse law is not true. 

∴ The algebraic structure (N, ·) is not a group. 

Example: (R, +) is a group, where R denote the set of real numbers. 

Abelian Group (or Commutative Group): Let (G, ∗) be a group. If ∗ is com-mutative 

that is 

a ∗ b = b ∗ a for all a, b ∈ G then (G, ∗) is called an Abelian 

group. Example: (Z, +) is an Abelian group. 

Example: Prove that G = {1, ω, ω
2

} is a group with respect to multiplication where 
1, ω, ω

2
 

are cube roots of unity. 

Solution: We construct the composition table as follows: 

 

 

 

 

 

 

The algebraic system is (G, ·) where ω
3 

= 1 and multiplication · is the binary 

opera-tion on G. From the composition table; it is clear that (G, ·) is closed with 

respect to the oper-ation multiplication and the operation · is associative. 

1 is the identity element in G such that 1 · a = a = a · 1, ∀ a ∈ G. 

Each element of G is invertible 

1. 1· 1 = 1 ⇒ 1 is its own inverse. 

2. ω · ω
2 

= ω
3 

= 1 ⇒ ω
2 

is the inverse of ω and ω is the inverse of ω
2 

in 

· 1 ω ω
2 

1 1 ω ω
2 

ω ω ω
2 

ω
3 

= 1 

ω
2 

ω
2 

ω
3 

= 1 ω
4 

= ω 
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G. 

∴ (G, ·) is a group and a · b = b · a, ∀a, b ∈ G, that is commutative law holds in 

G with respect to multiplication. 

∴ (G, ·) is an abelian group. 
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Example: Show that the set G = {1, −1, i, −i} 

where i = 

1 is an abelian group with 

respect 
to multiplication as a binary operation. Solution: Let us construct the composition 
table: 

 

· 1 −1 i −i 

1 1 −1 i −i 

-1 −
1 

1 −i i 

i i −i −1 1 

−i −i i 1 -1 

 

From the above composition, it is clear that the algebraic structure (G, ·) 

is closed and satisfies the following axioms: 

Associativity: For any three elements a, b, c ∈ G, (a · b) · c = 

a · (b · c). Since 
1 · (−1 · i) = 1 · −i = −i 
(1 · −1) · i = −1 · i = −i 

⇒ 1 · (−1 · i) = (1 · −1) · i 

Similarly with any other three elements of G the properties holds. 

∴ Associative law holds in (G, ·). 

Existence of identity: 1 is the identity element in (G, ·) such that 1 · a = a = a 

· 1, ∀ a ∈ G. Existence of inverse: 1 · 1 = 1 = 1 · 1 ⇒ 1 is inverse of 1. 

(−1) · (−1) = 1 = (−1) · (−1) ⇒ −1 is the inverse of (−1) 

i · (−i) = 1 = −i · i ⇒ −i is the inverse of i in G. 

−i · i = 1 = i · (−i) ⇒ i is the inverse of 

−i in G. Hence inverse of every element in G 

exists. 
Thus all the axioms of a group are satisfied. 

Commutativity: a · b = b · a, ∀a, b ∈ G hold in G. 

1 · 1 = 1 = 1 · 1; − 1 · 1 = −1 = 1 · −1 

i · 1 = i = 1 · i; i · −i = −i · i = 1 etc. 

Commutative law is 

satisfied. Hence (G, ·) is an 

abelian group. 

Example: Prove that the set Z of all integers with binary operation ∗ defined by a ∗ 

b = a + b 
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+ 1, ∀ a, b ∈ Z is an abelian group. Solution: 

Closure: Let a, b ∈ Z. Since a + b ∈ Z and a + b + 1 ∈ Z. 

∴ Z is closed under 

∗. Associativity: Let a, b, 

c ∈ Z. 

Consider (a ∗ b) ∗ c = (a + b + 1) ∗ c 

=a + b + 1 + c + 1 

=a + b + c + 2 

also 
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a ∗ (b ∗ c) = a ∗ (b + c + 1) 

 

Hence (a ∗ b) ∗ c = a ∗ (b ∗ c) for a, b, c ∈ 

Z. 

 

=a + b + c + 1 + 1 

=a + b + c + 2 

Existence of Identity: Let a ∈ Z. Let e ∈ Z such that e ∗ a = a ∗ e = a, i.e., a + e + 1 

= a 

⇒ e = −1 

e = −1 is the identity element in Z. 

Existence of Inverse: Let a ∈ Z. Let b ∈ Z such that a ∗ b = e. 

⇒ a + b + 1 = 

−1 b = −2 − a 

∴ For every a ∈ Z, there exits −2−a ∈ Z such that a∗(−2−a) = (−2−a)∗a = −1. 

∴ (Z, ∗) is an abelian group. 

Example: Show that the set Q+ of all positive rational numbers forms an abelian 

group under the composition defined by ◦ such that a ◦ b = ab/3 for a, b ∈ Q+. 

Solution: Q+ of the set of all positive rational numbers and for a, b ∈ Q+, we 

have the operation ◦ such that a ◦ b = ab/3. 

Associativity: a, b, c ∈ Q+⇒ (a ◦ b) ◦ c = a ◦ (b ◦ c). 

Since ab∈ Q+ and ab/3∈ Q+. 
Associativity: a, b, c ∈ Q+ ⇒ (a ◦ b) ◦ c = a ◦ (b ◦ c). 
Since (a ◦ b) ◦ c = ( ab/3 ) ◦ c =[ab/3 .c]/3 = a/3( bc/3 ) = a/3 (b ◦ c) 

= a ◦ (b ◦ c). Existence of Identity: Let a ∈ Q+. Let e ∈ Q+ such that 

e ◦ a = a. 

i.e., ea/3 = a 

⇒ ea − 3a = 0 ⇒ (e − 3)a = 0 

⇒ e − 3 = 0 (∵ a ≠ 0) 

⇒ e = 3 

∴ e = 3 is the identity element in Q+. 

Existence of Inverse: Let a ∈ Q+. Let b ∈ Q+ such that a ◦ b = e. 

⇒ab/3 = 3 

b = 9/a (∵ a ≠ 0) 

∴ For every a ∈ Q+, there exists 9/a ∈ Q+ such that a ◦ 9/a = 9/a ◦ a = 3. 
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Commutativity: Let a, b ∈ Q+ ⇒ a ◦ b = b ◦ a. 

Since a ◦ b = ab/3=ba/3 = 

b ◦ a. (Q+, ◦) is an abelian 

group. 

 

Exercises: 1. Prove that the set G of rational numbers other than 1 with operation 

⊕ such that 

a ⊕ b = a + b − ab for a, b ∈ G is abelian group. 
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4 

2. Consider the algebraic system (G, ∗), where G is the set of all non-zero real 

numbers and ∗ 

is a binary operation defined by: a ∗ b = 
ab   

, ∀a, b ∈ G. Show that (G, ∗) is an 

Addition modulo m 

We shall now define a composite known as ―addition modulo m‖ where m is fixed 

integer. 

If a and b are any two integers, and r is the least non-negative reminder 

obtained by dividing the ordinary sum of a and b by m, then the addition 

modulo m of a and b is r symbolically 

a +m b = r, 0 ≤ r < m. 

Example: 20 +6 5 = 1, since 20 + 5 = 25 = 4(6) + 1, i.e., 1 is the remainder when 
20+5 is 
divisible by 6. 

Example: −15 +5 3 = 3, since −15 + 3 = −12 = 3(−5) + 3. 

Multiplication modulo p 

If a and b are any two integers, and r is the least non-negative reminder 

obtained by dividing the ordinary product of a and b by p, then the 

Multiplication modulo p of a and b is r symbolically 

a ×p b = r, 0 ≤ r < p. 

Example: Show that the set G = {0, 1, 2, 3, 4} is an abelian group with 

respect to addition modulo 5. 

Solution: We form the composition table as follows: 

+

5 
0 1 2 3 4 

0 0 1 2 3 4 

1 1 2 3 4 0 

2 2 3 4 0 1 

3 3 4 0 1 2 

4 4 0 1 2 3 

 

Since all the entries in the composition table are elements of G, the set G is 

closed with respect to addition modulo 5. 

Associativity: For any three elements a, b, c ∈ G, (a +5 b) +5 c and a +5 (b +5 

c) leave the same remainder when divided by 5. 

i.e., (a +5 b) +5 c = a +5 (b +5 c) 

(1 +5 3) +5 4 = 3 = 1 +5 (3 +5 4) etc. 
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Existence of Identity: Clearly 0 ∈ G is the identity element, since we have 

0 +5 9 = 4 = 9 +5 0,∀ a ∈ G. 

Existence of Inverse: Each element in G is invertible with respect to addition 

modulo 5. 

0 is its own inverse; 4 is the inverse of 1 and 1 is the inverse of 4. 

2 is the inverse of 3 and 3 is the inverse of 2 with respect to addition modulo 

5 in G. Commutativity: From the composition table it is clear that a+5 b = b+5 a, 

∀ a, b ∈ G. 

Hence (G, +5) is an abelian group. 
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Example: Show that the set G= {1, 2, 3, 4} is an abelian with respect to 

multipli-cation modulo 5. 

Solution: The composition table for multiplication modulo 5 is 

× 
5 

 
1 

 
2 

 
3 

 
4 

1 1 2 3 4 

2 2 4 1 3 

3 3 1 4 2 

4 4 3 2 1 

From the above table, it is clear that G is closed with respect to the operation 

×5 and the binary composition ×5 is associative; 1 is the identity element. 

Each element in G has a inverse. 
1 is its own 

inverse 2 is the 

inverse of 3 

3 is the inverse of 2 

4 is the inverse of 4, with respect to the binary 

operation ×5. Commutative law holds good in (G, 

×5). 

Therefore (G, ×5) is an abelian group. 
Example: Consider the group, G = {1, 5, 7, 11, 13, 17} under 
multiplication modulo 18. Construct the multiplication table of G and find 

the values of: 5
−1

, 7
−1

and 17
−1

. 

Example: If G is the set of even integers, i.e., G = {· · · , −4, −2, 0, 2, 4, · · · } then 

prove that 

G is an abelian group with usual addition as the operation. Solution: Let a, b, c ∈ 

G. 

∴ We can take a = 2x, b = 2y, c = 2z, where x, 

y, z ∈ Z. Closure: a, b ∈ G ⇒ a + b ∈ G. 

Since a + b = 2x + 2y = 2(x + y) ∈ G. 

Associativity: a, b, c ∈ G ⇒ a + (b + c) = (a + b) + c 

Since 

a + (b + c) = 2x + (2y + 2z) 

=2[x + (y + z)] 

=2[(x + y) + z] 

=(2x + 2y) + 2z 

=(a + b) + c 

Existence of Identity: a ∈ G, there exists 0 ∈ G such that a + 0 = 0 + a = a. 
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Since a + 0 = 2x + 0 = 2x = a and 0 + a = 0 + 2x = 2x = a 

∴ 0 is the identity in G. 

Existence of Inverse: a ∈ G, there exists −a ∈ G such that a+(−a) = 

(−a)+a = 0. Since a + (−a) = 2x + (−2x) = 0 and (−a) + a = (−2x) + 

2x = 0. 

∴ (G, +) is a group. 

Commutativity: a, b ∈ G ⇒ a + b = b + a. 

Since a + b = 2x + 2y = 2(x + y) = 2(y + x) = 2y + 2x = b + a. 

∴ (G, +) is an abelian group. 
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Example: Show that set G = {x| x = 2
a
3

b 
for a, b ∈ Z} is a group under multipli-

cation. 

Solution: Let x, y, z ∈ G. We can take x = 2
p

3
q

, y = 2
r
3

s
, z = 2

l
3
m

, where p, q, r, s, 

l, m ∈ Z. 

We know that (i). p + r, q + s ∈ Z 

(ii). (p + r) + l = p + (r + l), (q + s) + m = q + (s + m). 

Closure: x, y ∈ G ⇒ x · y ∈ G. 

Since x · y = (2
p
3
q

)(2
r
3
s
) = 2

p+r
3
q+s ∈ G. Associativity: x, y, z ∈ G ⇒ (x · y) 

· z = x · (y · z) Since (x · y) · z = (2
p

3
q
2

r
3
s
)(2

l
3

m
) 

=2(p+r)+l3(q+s)+m 

=2p+(r+l)3q+(s+m) 

=(2
p

3
q

)(2
r
3
s
2
l
3

m
) 

=x · (y · z) 

Existence of Identity: Let x ∈ G. We know that e = 2
0
3
0 ∈ G, since 0 ∈ Z. 

∴ x · e = 2
p

3
q
2
0

3
0 

= 2
p+0

3
q+0 

= 2
p
3

q 
= x and e · x = 2

0
3
0

2
p
3

q 
= 2

p
3
q 

= 

x. ∴ e ∈ G such that x · e = e · x = x 

∴ e = 2
0
3
0 

is the identity element in G. 

Existence of Inverse: Let x ∈ G. 

Now y = 2
−p

3
−q ∈ G exists, since −p, −q ∈ Z such that 

x · y = 2
p
3

q
2

−p
3

−q 
= 2

0
3
0 

= e and y · x = 2
−p

3
−q

2
p
3
q 

= 2
0
3

0 
= e. 

∴ For every x = 2
p
3
q ∈ G there exists y = 2

−p
3

−q ∈ G such that x ·y = y ·x = 

e. ∴ (G, ·) is a group. 

Example: Show that the sets of all ordered pairs (a, b) of real numbers for 

which a ≠ 0     w.r.t the operation ∗ defined by (a, b) ∗ (c, d) = (ac, bc + d) is a 

group. Is the commutative? 

Solution: Let G = {(a, b)| a, b ∈ R and a ≠ 0}. Define a binary operation ∗ on G by 

(a, b) ∗ (c, 

d) = (ac, bc + d), for all (a, b), (c, d) ∈ G. Now we show that (G, ∗) is 

a group. Closure: (a, b), (c, d) ∈ G ⇒ (a, b) ∗ (c, d) = (ac, bc + d) ∈ 

G. 

Since a ≠ 0, c ≠ 0 ⇒ ac ≠ 0. 
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Associativity: (a, b), (c, d), (e, f) ∈ G ⇒ {(a, b) ∗ (c, d)} ∗ (e, f) = (a, b) ∗ {(c, d) 

∗(e, f)}. Since {(a, b) ∗ (c, d)} ∗ (e, f) = (ac, bc + d) ∗ (e, f) 

= (ace, (bc + d)e + f) 
= (ace, bce + de 

+ f) Also (a, b) ∗ {(c, d) ∗ (e, f)} = (a, b) ∗ 

(ce, de + f) 

= (a(ce), b(ce) + de + f) 
= (ace, bce + de + f) 

Existence of Identity: Let (a, b)∈G. Let (x, y)∈ G such that (x, y)∗(a, b)=(a,b)∗(x, 

y)=(a, b) 

⇒ (xa, ya + b) = (a, b) 
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⇒ xa = a, ya + b = b 

 

⇒ x = 1, (∵ a ≠ 0) and ya = 0 ⇒ x = 1 and y = 0 (∵ a ≠ 0) 

⇒ (1, 0) ∈ G such that (a, b) ∗ (1, 0) = (a, b). 

∴ (1, 0) is the identity in G. 

Existence of Inverse: Let (a, b) ∈ G. Let (x, y) ∈ G such that (x, y) ∗ (a, b) = (1, 0) 

⇒ (xa, ya + b) = (1, 0) 

⇒ xa = 1, ya + b = 0 ⇒ x = a
1 

, y =
 −

a
b
 

∴ The inverse of (a, b) exits and it is (1/a,-b/a ). 

Commutativity: Let (a, b), (c, d) ∈ G ⇒ (a, b) ∗ (c, d) ≠ (c, d) ∗ (a, b) 

Since (a, b) ∗ (c, d) = (ac, bc + d) and (c, d) ∗ (a, b) = (ca, da + b). 

∴ G is a group but not commutative group w.r.t ∗. 

Example: If (G, ∗) is a group then (a ∗ b)
−1 

= b
−1 ∗ a−1 

for all a, b ∈ 

G. Solution: Let a, b ∈ G and e be the identity element in G. 

Let a ∈ G ⇒ a
−1 ∈ G such that a∗a−1

=a
−1∗a=e and b∈ G ⇒ b

−1∈ G such that 
b∗b−1

=b
−1 ∗ b = 

e. 

Now a, b ∈ G ⇒ a ∗ b ∈ G and (a ∗ b)
−1 ∈ G. 

Consider 

(a ∗ b) ∗ (b
−1 ∗ a

−1
) = a ∗ [b ∗ (b

−1 ∗ a
−1

)] (by associativity law) 

=a ∗ [(b ∗ b
−1

) ∗ a
−1

] 

= a ∗ (e ∗ a
−1

) (b ∗ b
−1 

= e) 

= a ∗ a
−1 

(e is the identity) 

= e 
and 

(b
−1 ∗ a

−1
) ∗ (a ∗ b) = b

−1 ∗ [a
−1 ∗ (a ∗ b)] 

= b
−1 ∗ [(a

−1 ∗ a) ∗ b] 

= b
−1 ∗ [e ∗ b] 

= b
−1 ∗ b 

= e 

⇒ (a ∗ b) ∗ (b
−1 ∗ a

−1
) = (b

−1 ∗ a
−1

) ∗ (a ∗ b) = e 

(a ∗ b)
−1 

= b
−1 ∗ a

−1 
for all a, b ∈ G. 
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Note: 

1. (b
−1

a
−1

)
−1 

= ab 

2. (abc)
−1 

= c
−1

b
−1

a
−1

 

3. If (G, +) is a group, then −(a + b) = (−b) + (−a) 

4. −(a + b + c) = (−c) + (−b) + (−a). 
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Theorem: Cancelation laws hold good in G, i.e., for all a, b, c ∈ G a ∗ b = a ∗ c 

⇒ b = c (left cancelation law) b ∗ a = c ∗ a ⇒ b = c (right cancelation law). 

Proof: G is a group. Let e be the identity element in G. 

a ∈ G ⇒ a
−1 ∈ G such that a ∗ a

−1 
= a

−1 ∗ a = e. 

Consider 

a ∗ b = a ∗ c 

⇒ a
−1 ∗ (a ∗ b) = a

−1
(a ∗ c) 

⇒  (a
−1 ∗ a) ∗ b = (a

−1 ∗ a) ∗ c (by associative law) 

⇒  e ∗ b = e ∗ c (a
−1 

is the inverse of a in G) 

⇒  b = c (e is the identity element 

in G) and 

b ∗ a = c ∗ a 

⇒ (b ∗ a)a
−1 

= (c ∗ a) ∗ a
−1

 

⇒  b ∗ (a ∗ a
−1

) = c ∗ (a ∗ a
−1

) (by associative law) 

⇒ b ∗ e = c ∗ e (∵ a ∗ a
−1 

= e) 

⇒  b = c (e is the identity element in G) 

Note: 

1. If G is an additive group, a + b = a + c ⇒ b = c and b + a = c + a ⇒ b = c. 

2. In a semi group cancelation laws may not hold. Let S be the set of all 2 × 2 

matrices over integers and let matrix multiplication be the binary operation 

defined on S. Then S is a semi group of the above operation. 
1
 0
 

 0 0
 

 0 0 

If A= 
 0 

; B= 
 0 0 

 ;C= 
 1 1 

 , then A, B, C ∈ S and AB = AC, we observe that 
left 0 

      
cancellation law is not true in the semi group. 

3. (N, +) is a semi group. For a, b, c ∈ N 

a + b = a + c ⇒ b + c and b + a = c + a 

⇒ b = c. But (N, +) is not a group. 
In a semigroup even if cancellation laws holds, then semigroup is not a group. 

 
Example: If every element of a group G is its own inverse, show that G is an 

abelian group. Solution: Let a, b ∈ G. By hypothesis a
−1 

= a, b
−1 

= b. 

Then ab ∈ G and hence (ab)
−1 
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= ab. Now 

(ab)
−1 

= ab 

⇒ b
−1

a
−1 

= ab 

⇒ ba = ab 

∴ G is an abelian group. 
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Note: The converse of the above not true. 

For example, (R, +), where R is the set of real numbers, is abelian group, 

but no element except 0 is its own inverse. 

Example: Prove that if a
2 

= a, then a = e, a being an element of a 

group G. Solution: Let a be an element of a group G such that a
2 

= 

a. To prove that a = e. 

a
2 

= a ⇒ aa = a 

⇒ (aa)a
−1 

= aa
−1 ⇒ a(aa

−1
) = e 

⇒ ae = e [∵ aa
−1 

= e] ⇒ a = e [∵ ae = a] 

Example: In a group G having more than one element, if x
2 

= x, for 

every x ∈ G. Prove that G is abelian. 

Solution: Let a, b ∈ G. Under the given hypothesis, we have a
2 

= a, b
2 

= b, (ab)
2 

= ab. 

∴ a(ab)b = (aa)(bb) = a
2
b

2 
= ab = (ab)

2 
= (ab)(ab) = 

a(ba)b 

⇒ ab = ba (Using cancelation laws) 

∴ G is abelian. 

Example: Show that in a group G, for a, b ∈ G, (ab)
2 

= a
2

b
2 ⇔ G is abelian. 

(May. 2012) Solution: Let a, b ∈ G, and (ab)
2 

= a
2

b
2

. To prove that G is 

abelian. 

Then 

(ab)
2 

= a
2
b
2
 

⇒ (ab)(ab) = (aa)(bb) 

⇒  a(ba)b = a(ab)b (by Associative law) ⇒ ba = ab, (by 

cancellation laws) 

⇒  G is abelian. 

Conversely, let G be abelian. To prove that (ab)
2 

= a
2
b
2

. Then (ab)
2 

= (ab)(ab) = a(ba)b = a(ab)b 

= (aa)(bb) = a
2
b
2

. 
***Example: If a, b are any two elements of a group (G, ·), which commute. Show 
that 

1. a
−1 

and b commute 

2. b
−1 

and a commute 

3. a
−1 

and b
−1 

commute. 

Solution: (G, ·) is a group and such that 
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ab = ba. 

1. ab = ba ⇒ a
−1

(ab) = a
−1

(ba) 

⇒ (a
−1

a)b = a
−1

(ba) 

⇒ eb = (a
−1

b)a 

⇒ b = (a
−1

b)a 

⇒ ba
−1 

= [(a
−1

b)a]a
−1

 

=(a
−1

b)(aa
−1

) 

=(a
−1

b)e 

=a
−1

b 
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⇒ a
−1 

and b commute. 

1 ab = ba ⇒ (ab)b
−1 

= (ba)b
−1

 

⇒ a(bb
−1

) = 

(ba)b
−1 ⇒ 

ae = b(ab
−1

) 

⇒ a = b(ab
−1

) 

⇒ b
−1

a = b
−1

[b(ab
−1

)] 

=(b
−1

b)(ab
−1

)] 

=e(ab
−1

) 

=ab
−1

 

⇒ b
−1 

and a commute. 

2 ab = ba ⇒ (ab)
−1 

= (ba)
−1 

b
−1 

a
−1 

= a
−1 

b
−1

 

⇒ a
−1 

and b
−1 

are commute. 

Order of an Element 

Definition: Let (G, ∗) be a group and a ∈ G, then the least positive integer n if it 

exists such that a
n 

= e is called the order of a ∈ G. 

The order of an element a ∈ G is be denoted by O(a). 

Example: G = {1, −1, i, −i} is a group with respect to multiplication. 1 is the 

identity in G. 1
1 

= 1
2 

= 1
3 

= · · · = 1 ⇒ O(1) = 1. 

(−1)
2 

= (−1)
4 

= (−1)
6 

= · · · = 1 ⇒ O(−1) = 2. 

i
4 

= i
8 

= i
12 

= · · · = 1 ⇒ O(i) 

= 4. (−i)
4 

= (−i)
8 

= · · · = 1 ⇒ 

O(−i) = 4. 

Example: In a group G, a is an element of order 30. Find order of a
5

. 
Solution: Given O(a) = 30 

⇒  a
30 

= e, e is the identity element of G. Let O(a
5

) = n 

⇒ (a
5

)
n 

= e 

⇒  a
5n 

= e, where n is the least positive integer. Hence 30 is divisor of 5n. 

∴ n = 6. 

Hence O(a
5

) = 6 
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Sub Groups 

Definition: Let (G, ∗) be a group and H be a non-empty subset of G. If (H, ∗) is itself 

is a 

group, then (H, ∗) is called sub-group of 

(G, ∗). Examples: 
1. (Z, +) is a subgroup of (Q, +). 
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2. The additive group of even integers is a subgroup of the additive 

group of all integers. 

3. (N, +) is not a subgroup of the group (Z, +), since identity does not exist 

in N under 

+. 

Example: Let G = {1, −1, i, −i} and H = {1, −1}. 

Here G and H are groups with respect to the binary operation multiplication and 

H is a subset of G. Therefore (H, ·) is a subgroup of (G, ·). 

Example: Let H = {0, 2, 4} ⊆ Z6. Check that (H, +6) is a subgroup 

of (Z6, +6). Solution: Z6 = {0, 1, 2, 3, 4, 5}. 

 

 

 

 

 

 

 

 

∴ (Z6, +6) is a group. 

H= {0, 2, 4}. 

 

+6 0 2 4 

0 0 2 4 

2 2 4 0 

4 4 0 2 

 

The following conditions are to be satisfied in order to prove that it is 

a subgroup. (i). Closure: Let a, b ∈ H ⇒ a +6 b ∈ H. 

0, 2 ∈ H ⇒ 0 +6 2 = 2 ∈ H. 

(ii). Identity Element: The row headed by 0 is exactly same as the initial row. 

∴ 0 is the identity element. 

(iii). Inverse: 0
−1 

= 0, 2
−1 

= 4, 4
−1 

= 2. 

Inverse exist for each element of (H, +6). 

∴ (H, +6) is a subgroup of (Z6, +6). 

Theorem: If (G, ∗) is a group and H ⊆ G, then (H, ∗) is a subgroup of (G, ∗) if and 

only if 

+6 0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 2 3 4 5 0 

2 2 3 4 5 0 1 

3 3 4 5 0 1 2 

4 4 5 0 1 2 3 

5 5 0 1 2 3 4 
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(i) a, b ∈ H ⇒ a ∗ b ∈ H; 

(ii) a ∈ H ⇒ a
−1 ∈ 

H. Proof: The condition is 

necessary 

Let (H, ∗) be a subgroup of (G, ∗). 

To prove that conditions (i) and (ii) are satisfied. 
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Since (H, ∗) is a group, by closure property we have a, b ∈ H 

⇒ ab ∈ H. Also, by inverse property a ∈ H ⇒ a
−1 ∈ H. 

The condition is sufficient: 

Let (i) and (ii) be true. To prove that (H, ∗) is a subgroup 

of (G, ∗). We are required to prove is: ∗ is associative in H 

and identity e ∈ H. 

That ∗ is associative in H follows from the fact that ∗ is associative in G. Since H 

is nonempty, let a ∈ H ⇒ a
−1 ∈ H (by (ii)) 

∴ a ∈ H, a
−1 ∈ H ⇒ aa

−1 ∈ H (by (i)) 

⇒ e ∈ H (∵ aa
−1

 ∈ H ⇒ aa
−1

 ∈ G ⇒ aa
−1

 = e, where e is the identity in G.) 
⇒ e is the identity in 
H. Hence H itself is a 
group. 

∴ H is a subgroup of G. 

 

Example: The set S of all ordered pairs (a, b) of real numbers for which a ≠ 0 w.r.t 

the operation × defined by (a, b) × (c, d) = (ac, bc + d) is non-abelian. Let H= {(1, 

b)| b ∈ R} is a subset of S. Show that H is a subgroup of (S, ×). 

Solution: Identity element in S is (1, 0). Clearly (1, 0) ∈ H. 

Inverse of (a, b) in S is (1/a,-b/a ) (∵ 

a ≠ 0) Inverse of (1, c) in S is (1, -c/1 ), 

i.e., (1, −c) 

Clearly (1, c) ∈ H ⇒ (1, c)
−1 

= (1, −c) ∈ H. 

Let (1, b) ∈ H. 

(1, b) × (1, c)
−1 

= (1, b) × (1, −c) 

= (1.1, b.1 − c) = (1, b − c) ∈ H (∵ b − c ∈ R) 

∴ (1, b), (1, c) ∈ H ⇒ (1, b) × (1, c)
−1 ∈ H ∴ 

H is a subgroup of (S, ×). 
Note: (1, b) × (1, c) = (1.1, b.1 + c) 

=(1, b + c) 

=(1, c + b) 

=(1, c) × (1, b) 

∴ H is an abelian subgroup of the non-abelian group (S, ×). 

Theorem: If H1 and H2 are two subgroups of a group G, then H1 ∩ H2 is also a 
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subgroup of 
G. 

Proof: Let H1 and H2 be two subgroups of a 

group G. Let e be the identity element in G. 

∴ e ∈ H1 and e ∈ H2. ∴ e ∈ 

H1 ∩ H2. 

⇒ H1 ∩ H2 = ̸ ϕ. 

Let a ∈ H1 ∩ H2 and b ∈ H1 ∩ H2. 
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∴ a ∈ H1, a ∈ H2 and b ∈ H1, b ∈ H2. 

Since H1 is a subgroup, a ∈ H1 and b ∈ H1 ⇒ 

ab
−1 ∈ H1. Similarly ab

−1 ∈ H2. 

∴ ab
−1 ∈ H1 ∩ H2. 

Thus we have, a ∈ H1 ∩ H2, b ∈ H1 ∩ H2 ⇒ ab
−1 ∈ H1 ∩ H2. 

∴ H1 ∩ H2 is a subgroup of G. 

Example: Let G be the group and Z={x ∈ G| xy=yx for all y∈G}. Prove that Z is a 

subgroup of 

G. 

Solution: Since e ∈ G and ey = ye, for all y ∈ G. It follows 

that e ∈ Z. Therefore Z is non-empty. 

Take any a, b ∈ Z and any y ∈ G. Then 

(ab)y = a(by) 

=a(yb), since b ∈ Z, by = yb 

=(ay)b 

=(ya)b 

=y(ab) 

This show that ab ∈ Z. 

Let a ∈ Z ⇒ ay = ya for all y ∈ G. 

⇒ a
−1

(ay)a
−1 

= a
−1

(ya)a
−1

 

⇒ (a
−1

a)(ya
−1

) = (a
−1

y)(aa
−1

) 

⇒ e(ya
−1

) = (a
−1

y)e ⇒ a
−1

y = ay
−1

 

This shows that a
−1 ∈ Z. 

Thus, when a, b ∈ Z, we have ab ∈ Z and 

a
−1 ∈ Z. Therefore Z is a subgroup of G. 

This subgroup is called the center of G. 
Homomorphism 

Homomorphism into: Let (G, ∗) and (G
′
, ·) be two groups and f be a mapping from 

G into 

G
′
. If for a, b ∈ G, f(a∗b) = f(a)·f(b), then f is called homomorphism G into G

′
. 

Homomorphism onto: Let (G, ∗) and (G
′
, ·) be two groups and f be a mapping 

from G onto G
′
. If for a, b ∈ G, f(a∗b) = f(a)·f(b), then f is called homomorphism 



MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE – MRCET Page 101 
 

G onto G
′
. 

Also then G′ is said to be a homomorphic image of G. We write this as f(G)  

G′. Isomorphism: Let (G, ∗) and (G
′
, ·) be two groups and f be a one-one 

mapping of G onto G
′
. If for a, b ∈ G, f(a ∗ b) = f(a) · f(b), then f is said to be an 

isomorphism from G onto G
′
. 

Endomorphism: A homomorphism of a group G into itself is called an 

endomor-phism. Monomorphism: A homomorphism into is one-one, then 

it is called an monomor-phism. Epimorphism: If the homomorphism is 

onto, then it is called epimorphism. 

Automorphism: An isomorphism of a group G into itself is called an 

automorphism. 
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Example: Let G be the additive group of integers and G
′ 
be the multiplicative group. 

Then mapping f : G → G
′ 
given by f(x) = 2

x 
is a group homomorphism of G into G

′
. 

Solution: Since x, y ∈ G ⇒ x + y ∈ G and 2
x
, 2

y ∈ G
′ ⇒ 2

x 
· 2

y ∈ G
′
. 

∴ f(x + y) = 2
x+y 

= 2
x 

· 2
y 

= f(x) · f(y). 

⇒ f is a homomorphism of G into G
′
. 

Example: Let G be a group of positive real numbers under multiplication and G 
′
be a group of all real numbers under addition. The mapping f : G → G

′ 
given by 

f(x) = log10 x. Show that f is an isomorphism. 

Solution: Given f(x) = log10 x. 

Let a, b ∈ G ⇒ ab ∈ G. Also, f(a), f(b) ∈ G
′
. 

∴ f(ab) = log10 ab = log10 a + log10 b = f(a) + f(b). 

⇒  f is a homomorphism from G into 

G
′
. Let x1, x2 ∈ G and f(x1) = f(x2) 

log x = log x 
10    1 10 2 

 

 

⇒ 10
log10 x1 = 10

log10 x2 

⇒ x1 = x2 

⇒  f is one-one. 

⇒ f(10
y
) = log10(10

y
) = y. 

∴ For ever y ∈ G
′
, there exists 10

y ∈ G such that f(10
y
) = y 

⇒  f is onto. 

∴ f an isomorphism from G to G
′
. 

Example: If R is the group of real numbers under the addition and R
+ 

is the group 

of positive real numbers under the multiplication. Let f : R → R
+ 

be defined by 

f(x) = e
x
, then show that f is an isomorphism. 

Solution: Let f : R → R
+ 

be defined by f(x) = e
x
. 

f is one-one: Let a, b ∈ G and f(a) = f(b) 

⇒  e
a 

= e
b
 

⇒  log e
a 

= log e
b
 

⇒  
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⇒  a log e = b log e 

⇒  a = b 

Thus f is one-one. 

f is onto: If c ∈ R
+ 

then log c ∈ R and f(log c) = e
log c 

= c 

Thus each element of R
+ 

has a pre-image in R under f and hence f is onto. 

f is Homomorphism: f(a + b) = e
a+b 

= e
a

.e
b 

= f(a).f(b) Hence f is an isomorphism. 
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Example: Let G be a multiplicative group and f : G → G such that for a ∈ G, 

f(a) = a
−1

. Prove that f is one-one and onto. Also, prove that f is 

homomorphism if and only if G is commutative. 

Solution: f : G → G is a mapping such that f(a) = a
−1

, 

for a ∈ G. (i). To prove that f is one-one. 

Let a, b ∈ G. ∴ a
−1

, b
−1 ∈ G and f(a), 

f(b) ∈ G. Now f(a) = f(b) 

⇒ a
−1 

= b
−1 

 

⇒ (a−1)−1 = (b−1)−1 

⇒ a = b 

∴ f is one-one. 

 
(ii). To prove that f is onto. 

Let a ∈ G. ∴ a
−1 ∈ G such that f(a

−1
) = (a

−1
)
−1 

= a. 

∴ f is onto. 

(iii). Suppose f is a homomorphism. 

For a, ∈ G, ab ∈ G. Now f(ab) = f(a)f(b) 

 

⇒ (ab)
−1 

= a
−1

b
−1 

⇒ b−1a−1 = a−1b−1 

⇒ (b−1a−1)−1 = (a−1b−1)−1 

 

⇒ (a−1)−1(b−1)−1 = (b−1)−1(a−1)−1 

⇒  ab = ba 

∴ G is abelian. 

(iv). Suppose G is abelian ⇒ ab = ba, ∀ a, b ∈ G. 

For a, b ∈ G, f(ab) = (ab)
−1

 

= b−1a−1 

=a−1b−1 
=f(a)f(b) 

∴ f is a homomorphism. 
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UNIT-3 

ELEMENTARY COMBINATORICS 

Combinatorics is a subfield of “discrete mathematics,” so we should begin 

by asking what discrete mathematics means. The differences are to some 

extent a matter of  opinion,  and various mathematicians might classify 

specific topics differently. 

“Discrete” should not be confused with “discreet,” which is a much more 

commonly-used word. They share the same Latin root, “discretio,” which 

has to do with wise discernment or separation.  In the mathematical 

“discrete,” the emphasis is on separateness, so “discrete” is     the opposite 

of “continuous.” If we  are studying objects that can be separated and 

treated as       a (generally countable) collection of units rather than a 

continuous structure, then this study   falls into discrete mathematics. 

In calculus, we deal with continuous functions, so calculus is not 

discrete mathematics. In linear algebra, our matrices often have real 

entries, so linear algebra also does not fall into discrete mathematics. 

Text books on discrete mathematics often include some logic, as 

discrete mathematics is often used as a gateway course for upper-level 

math. Elementary number theory and set theory are also sometimes 

covered. Algorithms are a common topic, as algorithmic techniques tend 

to work very well on the sorts of structures that we study in discrete 

mathematics. 

In Combinatorics, we focus on combinations and arrangements of 

discrete structures. There are five major branches of combinatorics that we 

will touch on in this course: enumeration, graph theory, Ramsey Theory, 

design theory, and coding theory. (The related topic of cryptog- raphy can 

also be studied in combinatorics, but we will not touch on it in this course.) 

We will focus on enumeration, graph theory, and design theory, but will 

briefly introduce the other two topics. 

 

1A. Enumeration 

Enumeration is a big fancy word for counting. If you‟ve taken a course in 

probability and statistics,  you‟ve  already covered some of the techniques 

and problems we‟ll be covering in  this course. When a statistician (or other 

mathematician) is calculating the “probability” of a particular outcome in 

circumstances where all outcomes are equally likely, what they usually do is 

enumerate all possible outcomes, and then figure out how many of these 

include the outcome they are looking for. 

EXAMPLE 1.1. What is the probability of rolling a 3 on a 6-sided die? 
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SOLUTION. To figure this out, a mathematician would count the sides 

of the die (there are six) and count how many of those sides display a 

three (one of them). She would conclude that the probability of rolling a 

3 on a 6-sided die is 1/6 (one in six). 

 

1 
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That was an example that you could probably figure out without having 

studied enumera- tion or probability,  but it nonetheless illustrates the basic 

principle behind many calculations     of probability. The object of 

enumeration is to enable us to count outcomes in much more complicated 

situations.   This sometimes has natural applications to questions of 

probability,   but our focus will be on the counting, not on the probability. 

After studying enumeration in this course, you should be able to solve problems such as: 

If you are playing Texas Hold‟em poker against a single 

opponent, and the two cards in your hand are a pair, what is the 

probability that your opponent has a higher pair? 

• How many distinct Shidokus (4-by-4 Sudokus) are there? 

How many different orders of five items can be made from a bakery 

that makes three kinds of cookies? 

Male honeybees come from a queen bee‟s unfertilised eggs,  so have  

only one parent   (a female).  Female  honeybees have  two  parents 

(one male,  one female).  Assuming  all ancestors were distinct, how 

many ancestors does a male honeybee have from 10 generations ago? 

Although all of these questions (and many others that arise naturally) 

may be of interest to you, the reason we begin our study with 

enumeration is because we‟ll be able to use many of the techniques we 

learn, to count the other structures we‟ll be studying. 

 

1B. Graph Theory 

When a mathematician talks about graph theory, she is not referring to 

the “graphs” that you learn about in school, that can be produced by a 

spreadsheet or a graphing calculator. The “graphs” that are studied in 

graph theory are models of networks. 

Any network can be modeled by using dots to represent the nodes of 

the network (the cities, computers, cell phones, or whatever is being 

connected) together with lines to represent the connections between 

those nodes (the roads, wires, wireless connections, etc.). This model is 

called a graph. It is important to be aware that only at a node may 

information, traffic, etc. may pass from one edge of a graph to another 

edge. If we want to model a highway network using a graph, and two 

highways intersect in the middle of nowhere, we must still place a node at 

that intersection. If we draw a graph in which edges cross over each 

other but there is no node at that point, you should think of it as if there is 

an overpass there with no exits from one highway to the other: the roads 

happen to cross, but they are not connecting in any meaningful sense. 

• 

• 

• 
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EXAMPLE 1.2. The following 

diagram: Calgary 
Strathmore 

 

 

 

 

 

Fort Macleod

 Lethbridge Medicine 

Hat is a graph. 

Many questions that have important real-world applications can be 

modeled with graphs. These are  not always  limited to  questions that seem 

to apply to networks.   Some questions   can be modeled as graphs by using 

lines to represent constraints or some other relationship between them (e.g. 

the nodes might represent classes, with a line between them if they cannot 
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be scheduled at the same time, or some nodes might represent students 

and others classes, with a line between a student and each of the classes 

he or she is taking). 

After studying graph theory in this course, you should be able to solve problems such 

as: 

• How can we find a good route for garbage trucks to take through a particular 

city? 

• Is there a delivery route that visits every city in a particular area, without 

repetition? 

Given a collection of project topics and a group of students each of 

whom has expressed interest in some of the topics, is it possible to 

assign each student a unique topic that interests him or her? 

A city has bus routes all of which begin and end at the bus terminal, 

but with different schedules, some of which overlap. What is the 

least number of buses (and drivers) required in order to be able to 

complete all of the routes according to the schedule? 

• Create a schedule for a round-robin tournament that uses as few time 

slots as possible. Some of these questions you may only be able to answer 

for particular kinds of graphs. 
Graph theory is a relatively “young” branch of mathematics. Although some of 
the problems 

and ideas that we  will study date back a few hundred years,  it was  not 

until the 1930s that  these individual problems were gathered together and a 

unified study of the theory of graphs began to develop. 

 

1C. Ramsey Theory 

Ramsey theory takes its name from Frank P. Ramsey, a British 

mathematician who died in 1930 at the tragically young age of 26, when 

he developed jaundice after an operation. 

Ramsey was a logician. A result that he considered a minor lemma in one 

of his logic papers now bears the name “Ramsey‟s Theorem” and was  the 
basis for this branch of mathematics.    Its statement requires a bit of graph 

theory: given c colours and fixed sizes n1, . . . , nc, there is an integer r = 
R(n1, . . . , nc) such that for any colouring the edges of of a complete graph 
on r vertices, there must be some i between 1 and c such that there is a 

complete subgraph on ni vertices, all of whose edges are coloured with 
colour i. 

In addition to requiring some graph theory,  that statement was a bit 

technical.   In much    less precise terms that don‟t require so much  

• 

• 
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background knowledge (but could be misleading  in specific situations), 

Ramsey Theory asserts that if structure is big enough and contains a 

property we are interested in, then no matter how we cut it into pieces, at 

least one of the pieces should also have that property. One major theorem in 

Ramsey Theory is van der Waerden‟s Theorem, which states that for any  

two  constants c and n,  there is a constant V (c, n) such  that if we  take V 

(c, n) consecutive numbers and colour them with c colours,  there must be  

an arithmetic progression of length n all of whose members have been 

coloured with the same colour. 

EXAMPLE 1.3. Here is a small example of van der Waerden‟s Theorem. 

With two colours and a desired length of 3 for the arithmetic progression, 

we can show that V (2, 3) > 8 using the following colouring: 
345678910 

(In case it is difficult to see, we point out that 3, 4, 7, and 8 are black, 

while 5, 6, 9, and 10 are grey, a different colour.) Notice that with eight 

consecutive integers, the difference in a three-term arithmetic 

progression cannot be larger than three. For every three-term arithmetic 

progression with difference of one, two, or three, it is straightforward to 

check that the numbers have not all received the same colour. 

In fact, V (2, 3) = 9, but proving this requires exhaustive testing. 
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We  will touch lightly on Ramsey Theory in this course, specifically on 

Ramsey‟s Theorem   itself, in the context of graph theory. 

 

1D. Design Theory 

Like graph theory, design theory is probably not what any non-

mathematician might expect from its name. 

When researchers conduct an experiment, errors can be introduced by 

many factors (in- cluding, for example, the timing or the subject of the 

experiment). It is therefore important to replicate the experiment a number 

of times, to ensure that these unintended variations do not account for the 

success of a particular treatment. If a number of different treatments are 

being tested, replicating all of them numerous times becomes costly and 

potentially infeasible. One way to reduce the total number of trials while 

still maintaining the accuracy, is to test multiple treatments on each subject, 

in different combinations. 

One of the major early motivations for design theory was this context: 

given a fixed number of total treatments, and a fixed number of treatments 

we are willing to give to any subject, can  we find combinations of the 

possible treatments so that each treatment is given to some fixed number of 

subjects, and any pair of treatments is given together some fixed number of 

times (often just once). This is the basic structure of a block design. 

EXAMPLE 1.4. Suppose that we have seven different fertilisers and seven 

garden plots on which to try them. We can organise them so that each 

fertiliser is applied to three of the plots, each garden plot receives 3 

fertilisers,  and any  pair of fertilisers is used together on precisely one     of 

the plots. If the different fertilisers are numbered one through seven, then a 

method for arranging them is to place fertilisers 1, 2, and 3 on the first 

plot; 1, 4, and 5 on the second; 1, 

6, and 7 on the third; 2, 4, and 6 on the fourth; 2, 5, and 7 on the fifth; 3, 

4, and 7 on the sixth; and 3, 5, and 6 on the last. Thus, 

123    145   167 

246    257   347 

356 

is a design. 

This basic idea can be generalised in many ways,  and the study of 

structures like these is   the basis of design theory. In this course,  we  will 

learn some facts about when designs exist,  and how to construct them. 

After studying design theory in this course, you should be able to 
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solve problems such as: Is it possible for a design to exist with a 

particular set of parameters? 

What methods might we use in trying to construct a design? 

 

1E. Coding Theory 

In many people‟s minds “codes” and “cryptography” are inextricably 

linked, and they might be hard-pressed to tell you the difference. 

Nonetheless, the two topics are vastly different, as is the mathematics 

involved in them. 

Coding theory is the study of encoding information into different 

symbols. When someone uses a code in an attempt to make a message 

that only certain other people can read, this becomes cryptography. 

Cryptographers study strategies for ensuring that a code is difficult to 

“break” for those who don‟t have some additional information. In coding 

theory, we ignore the question of who has access to the code and how 

secret it may be. Instead, one of the primary concerns becomes our 

ability to detect and correct errors in the code. 
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Codes are used for many purposes in which the information is not 

intended to be secret. For example, computer programs are transformed 

into long strings of binary data, that a computer reinterprets as 

instructions. When you text a photo to a friend, the pixel and colour 

information are converted into binary data to be transmitted through 

radio waves. When you listen to an 

.mp3 file, the sound frequencies of the music have been converted into 

binary data that your computer decodes back into sound frequencies. 

Electronic encoding is always subject to interference, which can 

cause errors. Even when a coded message is physically etched onto a 

device (such as a dvd), scratches can make some parts of the code 

illegible. People don‟t like it when their movies, music, or apps freeze, 

crash, or skip over something. To avoid this problem, engineers use 

codes that allow our devices to automatically detect, and correct, minor 

errors that may be introduced. 

In coding theory, we learn how to create codes that allow for error 

detection and correction, without requiring excessive memory or storage 

capacity. Although coding theory is not a focus  of this course, designs can 

be used to create good codes. We will learn how to make codes from 

designs, and what makes these codes “good.” 

EXAMPLE 1.5. Suppose we have a string of binary information, and we 

want the computer to store it so we can detect if an error has arisen.  There 

are two  symbols we  need to encode:  0  and 1. If we just use 0 for 0 and 1 

for 1, we‟ll never know if a bit has been flipped (from 0 to 1  or vice versa). 

If we use 00 for 0 and 01 for 1, then if the first bit gets flipped we‟ll know 

there was an error (because the first bit should never be 1), but we won‟t 

notice if the second was flipped. If we use 00 for 0 and 11 for 1, then we  

will be able to detect an error, as long as at  most one bit gets flipped, 

because flipping one bit of either code word will result in either 01 or 10, 

neither of which is a valid code word. Thus, this code allows us to detect an 

error.  It does  not allow us to correct an error, because even knowing that a 

single bit has been flipped, there    is no way of knowing whether a 10 arose 

from a 00 with the first bit flipped, or from a 11 with the second bit flipped. 

We would need a longer code to be able to correct errors. 

After our study of coding theory, you should be able to solve problems such as: 

• Given a code, how many errors can be detected? 

• Given a code, how many errors can be corrected? 

Construct some small codes that allow detection and correction of 

small numbers of errors. 

• 
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EXERCISES 1.6. Can you come up with an interesting counting problem 

that you wouldn‟t know how to solve? 

 

  
SUMMARY: 

• enumeration 

• graph theory 

• Ramsey theory 

• design theory 

• • coding theory 

 
Basic Counting Techniques 

 

When we are trying to count the number of ways in which something can 

happen, sometimes the answer is very obvious. For example, if a doughnut 

shop has five different kinds of doughnuts  for sale and you are planning to 

buy one doughnut, then you have five choices. 

There are some ways in which the situation can become slightly more 

complicated. For example, perhaps you haven‟t decided whether you‟ll buy 

a doughnut or a bagel, and the store also sells three kinds of bagels. Or 

perhaps you want a cup of coffee to go with your doughnut, and there are 

four different kinds of coffee, each of which comes in three different sizes. 

These particular examples are fairly small and straightforward, and 

you could list all of the possible options if you wished. The goal of this 

chapter is to use simple examples like these to demonstrate two rules that 

allow us to count the outcomes not only in these situations, but in much 

more complicated circumstances. These rules are the product rule, and 

the sum rule. 

 

2A. The product rule 

The product rule is a rule that applies when we there is more than one 

variable (i.e. thing that  can change) involved in determining the final 

outcome. 

EXAMPLE 2.1. Consider the example of buying coffee at a coffee shop 

that sells four varieties and three sizes. When you are choosing your coffee, 

you need to choose both variety and size. One way of figuring out how 

many choices you have in total, would be to make a table. You could label 

the columns with the sizes, and the rows with the varieties (or vice versa, it 

doesn‟t matter). Each entry in your table will be a different combination of 
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· 

variety and size: 

 

 Small Medium Large 

Latte small latte medium latte large latte 
Mocha small mocha medium mocha large mocha 
Espresso small 

espresso 
medium 
espresso 

large 
espresso 

Cappucci
no 

small 
cappuccino 

medium 
cappuccino 

large 
cappuccino 

As you can see, a different combination of variety and size appears in 

each space of the  table, and every possible combination of variety and size 

appears somewhere. Thus the total number of possible choices is the 

number of entries in this table. Although in a small example like this we 

could simply count all of the entries and see that there are twelve, it will be 

more useful to notice that elementary arithmetic tells us that the number of 

entries in the table will     be the number of rows times the number of 

columns, which is four times three. 

In other words, to determine the total number of choices you have, we 

multiply the number  of choices of variety (that is, the number of rows in 

our table) by the number of choices of size (that is, the number of columns 

in our table). This is an example of what we‟ll call the product rule. 

We‟re now ready to state the product rule in its full generality. 

THEOREM 2.2.Product Rule Suppose that when you are determining the 
total number of outcomes, you can identify two different aspects that can 
vary. If there are n1 possible outcomes for the first aspect, and for each of 
those possible outcomes, there are n2 possible outcomes for the second 
aspect, then the total number of possible outcomes will be n1n2. 

In the above example, we can think of the aspects that can change as 

being the variety of coffee, and the size. There are four outcomes 

(choices) for the first aspect, and three outcomes (choices) for the second 

aspect, so the total number of possible outcomes is 4 3 = 12. 

Sometimes it seems clear that there are more than two aspects that are 

varying. If this happens, we can apply the product rule more than once to 

determine the answer, by first identifying two  aspects (one of which may  

be “all the rest”), and then subdividing one or both  of those aspects. An 

example of this is the problem posed earlier of buying a doughnut to go  

with your coffee. 

EXAMPLE 2.3. Kyle wants to buy coffee and a doughnut. The local 

doughnut shop has five kinds of doughnuts for sale, and sells four varieties 

of coffee in three sizes (as in Example 2.1). How many different orders 

could Kyle make? 
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SOLUTION. A natural way to divide Kyle‟s options into two aspects that 
can vary, is  to consider separately his choice of doughnut, and his choice of 
coffee. There are five choices for the kind of doughnut he orders, so n1 = 5. 
For choosing the coffee, we have already used the product rule in Example 
2.1 to determine that the number of coffee options is n2 = 12. 

Thus the total number of different orders Kyle could make is n1n2 = 5 · 12 = 60. 

Let‟s go through an example that more clearly involves repeated 

applications of the product rule. 

EXAMPLE 2.4.   Chlo ë  wants  to  manufacture  children‟s  t-shirts.   There  

are  generally  three sizes of t-shirts for children: small, medium, and 

large. She wants to offer the t-shirts in eight different colours (blue, 

yellow, pink, green, purple, orange, white, and black). The shirts can 

have an image on the front, and a slogan on the back. She has come up 

with three images, and five slogans. 

To stock her show room, Chlo ë wants to produce a single sample of each 

kind of shirt that she will be offering for sale. The shirts cost her $4 each to 

produce. How much are the samples going to cost her (in total)? 

 
SOLUTION. To solve this problem, observe that to determine how many 
sample shirts Chlo ë will produce, we can consider the size as one aspect, 
and the style (including colour, image, and slogan) as the other. There are n1 
= 3 sizes. So the number of samples will be three times n2, where n2 is the 
number of possible styles. 

We now break n2 down further: to determine how many possible styles are available, 
you 

can divide this into two aspects: the colour, and the decoration (image 
and slogan). There are n2,1 = 8 colours. So the number of styles will be 
eight times n2,2, where n2,2 is the number of possible decorations 
(combinations of image and slogan) that are available. 

We can break n2,2 down further: to determine how many possible 
decorations are available, you divide this into the two aspects of image 
and slogan. There are n2,2,1 = 3 possible images, and n2,2,2 = 5 possible 
slogans, so the product rule tells us that there are n2,2 = 3 5 = 15 possible 
combinations of image and slogan (decorations). 

 

Putting all of this together, we see that Chlo ë will have to create 3(8(3   

5)) = 360 sample t-shirts. As each one costs $4, her total cost will be 

$1440. 

 

Notice that finding exactly two aspects that vary can be quite artificial. 

Example 2.4 serves  as a good demonstration for a generalisation of the 

product rule as we stated it above. In that example,  it would have  been 
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more natural to have considered from the start that there were  four 

apparent aspects to the t-shirts that can vary: size; colour; image; and 

slogan. The total number of t-shirts she needed to produce was the product 

of the number of possible outcomes    of each of these aspects: 3 · 8 · 3 · 5 = 

360. 

THEOREM 2.5.Product Rule for many aspects Suppose that when you 
are determining the total number of outcomes, you can identify k different 
aspects that can vary. If for each i between 1 and k there are ni possible 
outcomes for the ith aspect, then the total number of 

possible outcomes will be 
Qk ni (that is, the product as i goes from 1 to k of the ni). 

Now let‟s look at an example where we are trying to evaluate a probability. Since 
this 

course is about counting rather than probability, we‟ll restrict our 

attention to examples where all outcomes are equally likely. Under this 

assumption, in order to determine a probability, we can count the number 

of outcomes that have the property we‟re looking for, and divide by the 

total number of outcomes. 

EXAMPLE 2.6. Peter and Mary have two daughters. What is the 

probability that their next two children will also be girls? 

 

SOLUTION. To answer this, we consider each child as a different aspect. 

There are two possible sexes for their third child: boy or girl. For each of 

these, there are two possible choices for their fourth child: boy or girl. So in 

total, the product rule tells us that there are 2 2 = 4 possible combinations 

for the sexes of their third and fourth children.  This will be the denominator 

of  the probability. 

To determine the numerator (that is, the number of ways in which both 

children can  be  girls), we  again consider each child as a different aspect.  

There is only one possible way  for  the third child to be a girl, and then 

there is only one possible way  for the fourth child to be        a girl. So in 

total, only one of the four possible combinations of sexes involves both 

children being girls. 

The probability that their next two children will also be girls is 1/4. 

 

Notice that in this example, the fact that Peter and Mary‟s first two 

children were girls was irrelevant to our calculations, because it was already 

a known outcome, over  and done with,  so is true no matter what may 

happen with their later children.  If Peter and Mary hadn‟t yet had  any 

children and we asked for the probability that their first four children will all 

be girls, then our calculations would have to include both possible options 

for the sex of each of their first two children. In this case,  the final 

probability would be 1/16 (there are 16 possible combinations  for the sexes 
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of four children, only one of which involves all four being female). 

EXERCISES 2.7. Use only the product rule to answer the following questions: 

1) The car Jack wants  to buy comes in four colours;  with or without air 

conditioning;   with five different options for stereo systems; and a 

choice of none, two, or four floor mats. If the dealership he visits has 

three cars in the lot, each with different options, what is the 

probability that one of the cars they have  in stock has exactly the 

options   he wants? 

2) Candyce is writing a “Choose your own adventure” book in which 

she wants every possible choice to result in a different ending. If 

there are four points at which choices 

must be made in every storyline,  and there are three choices the 

first time but two   every time after that, how many endings does 

Candyce need to write? 

3) William is buying five books. For each book he has a choice of 

version: hardcover, paperback, or electronic. In how many different 

ways can he make his selection? 

 

2B. The sum rule 

The sum rule is a rule that can be applied to determine the number of 

possible outcomes when there are two different things that you might 

choose to do (and various ways  in which you can  do each of them), and 

you cannot do both of them. Often, it is applied when there is a natural way 

of breaking the outcomes down into cases. 

EXAMPLE 2.8. Recall the example of buying a bagel or a doughnut at 

a doughnut shop that sells five kinds of doughnuts and three kinds of 

bagels. You are only choosing one or the other, so one way to determine 

how many choices you have in total, would be to write down all of the 

possible kinds of doughnut in one list, and all of the possible kinds of 

bagel in another list: 

Doughnuts   Bagels 

chocolate glazed 

 blueberry 

chocolate iced cinnamon 

raisin 

honey cruller

 plai

n custard filled 

original glazed 
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The total number of possible choices is the number of entries that appear 

in the two lists combined, which is five plus three. 

In other words, to determine the number of choices you have, we add the 

number of choices of doughnut (that is, the number of entries in the first 

list) and the number of choices of bagel (that is, the number of entries in the 

second list). This is an example of the sum rule. 

We‟re now ready to state the sum rule in its full generality. 

THEOREM 2.9.Sum Rule Suppose that when you are determining the 
total number of out- comes,  you can  identify two distinct cases  with the 
property that every possible outcome lies   in exactly one of the cases. If 
there are n1 possible outcomes in the first case, and n2 possible outcomes in 
the second case, then the total number of possible outcomes will be n1 + n2. 

It‟s hard to do much with the sum rule by itself, but we‟ll cover  a couple  

more examples  and then in the next section, we‟ll get into some more 

challenging examples where we combine the two rules. 

Sometimes the problem naturally splits into more than two cases, with 

every possible out- come lying in exactly one of the cases. If this happens, 

we can apply the sum rule more than  once to determine the answer. First 

we identify two cases (one of which may be “everything else”), and then 

subdivide one or both of the cases. Let‟s look at an example of this. 

EXAMPLE 2.10.  Mary and Peter are planning to have  no more than three 

children.  What    are the possible combinations of girls and boys they might 

end up with, if we aren‟t keeping track of the order of the children?  (By not 

keeping track of the order of the children, I mean   that we‟ll consider 

having two girls followed by one boy as being the same as having two girls 

and one boy in any other order.) 

 

SOLUTION. To answer this question, we‟ll break the problem into cases. 

First we‟ll divide the problem into two possibilities: Mary and Peter have no 

children; or they have at least one child.  If Mary and Peter have no 

children, this can happen in only one way (no boys and no girls). If Mary 

and Peter have at least one child, then they have between one and three 

children. We‟ll have to break this down further to find how many outcomes 

are involved. 

We break the case where Mary and Peter have between one and three  

children down into  two cases:  they might have  one child,  or they might 

have  more than one child.  If they have  one child, that child might be a boy 

or a girl, so there are two possible outcomes. If they have more than one 

child, again we‟ll need to further subdivide this case. 

The case where Mary and Peter have either two or three children 
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naturally breaks down into two cases: they might have two children, or they 

might have three children. If they have two children, the number of girls 

they have might be zero, one, or two, so there are three possible outcomes 

(the remaining children, if any, must all be boys). If they have three 

children, the number of girls they have might be zero, one, two, or three, so 

there are four possible outcomes (again, any remaining children must be 

boys). 

Now we put all of these outcomes together with the sum rule. We 

conclude that in total, there are 1 + (2 + (3 + 4)) = 10 different 

combinations of girls and boys that Mary and Peter might end up with. 

 

Notice that it was artificial to repeatedly break this example up into 

two cases at a time. Thus, Example 2.10 serves as a good demonstration 

for a generalisation of the sum rule as we stated it above. It would have 

been more natural to have broken the problem of Mary and Peter‟s kids 

up into four cases from the beginning, depending on whether they end 

up with zero, one, two, or three kids. The total number of combinations 

of girls and boys that Mary and Peter might end up with, is the sum of 

the combinations they can end up with in each of these cases; that is, 1 + 

2 + 3 + 4 = 10. 

THEOREM 2.11.Sum Rule for many cases Suppose that when you are 
determining the total number of outcomes, you can identify k distinct cases 
with the property that every possible outcome lies in exactly one of the 
cases.  If for each i between 1 and k there are ni possible 

outcomes in the ith case, then the total number of possible outcomes will be 
Σk ni  

(that is, 
the sum as i goes from 1 to k of the ni). 

There is one other important way to use the sum rule. This application 

is a bit more subtle. Suppose you know the total number of outcomes, 

and you want to know the number of outcomes that don’t include a 

particular event. The sum rule tells us that the total number of outcomes 

is comprised of the outcomes that do include that event, together with 

the ones that don‟t. So if it‟s easy to figure out how many outcomes 

include the event that interests you, then you can subtract that from the 

total number of outcomes to determine how many outcomes exclude that 

event. Here‟s an example. 

EXAMPLE 2.12. There are 216 different possible outcomes from rolling a 

white die, a red die, and a yellow die. (You can work this out using the 

product rule.) How many of these outcomes involve rolling a one on two or 

fewer of the dice? 
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Pancakes, waffles, and toast come with butter. 

Coffee and tea come with milk and sugar. 
 

Optional extras: 

marmalade, lemon curd, or blackberry jam for toast; 

maple syrup for pancakes or waffles. 

SOLUTION. Tackling this problem directly, you might be inclined to split 

it into three cases: outcomes that involve rolling no ones, those that involve 

rolling exactly one one, and those that involve rolling exactly two ones. If 

you try this, the analysis will be long and fairly involved,  and will include 

both the product rule and the sum rule. If you are careful, you will be able 

to find the correct answer this way. 

We‟ll use a different approach, by first counting the outcomes that we 

don’t want: those that involve getting a one on all three of the dice. There 

is only one way for this to happen: all three of the dice have to roll ones! 

So the number of outcomes that involve rolling ones on two or fewer of 

the dice, will be 216 − 1 = 215. 

 

EXERCISES 2.13. Use only the sum rule to answer the following questions: 

1)I have four markers on my desk: one blue and three black. Every day 

on my way  to  class, I grab three of the markers without looking.  

There are four different  markers  that could be left behind, so there 

are four combinations of markers that I could take with me. What is 

the probability that I take the blue marker? 

2) Maple is thinking of either a letter, or a digit. How many different 

things could she be thinking of? 

3) How many of the 16 four-bit binary numbers have at most one 1 in them? 

 

2C. Putting them together 

When we combine the product rule and the sum rule, we can explore more challenging 

questions. 

EXAMPLE 2.14. Grace is staying at a bed-and-breakfast. In the evening, 

she is offered a  choice of menu items for breakfast in bed, to be delivered 

the next morning. There are three kinds of items: main dishes, side dishes, 

and beverages. She is allowed to choose up to one of each, but some of 

them come with optional extras. From the menu below, how many different 

breakfasts could she order? 

 

 

 

Mains 

Menu 

Sides 

 

 

Beverage

s 
pancakes fruit 

cup 
coffee 

oatmeal 

omelet

te 

toast tea 

orange 

juice 
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waffl

es 

 

 

 

 

 

 

 

 

SOLUTION. We see that the number of choices Grace has available 

depends partly on whether or not she orders an item or items that include 

optional extras. We will therefore divide our consideration into four cases: 

1)Grace does not order any pancakes, waffles, or 

toast. 2)Grace orders pancakes or waffles, but 

does not order toast. 

3)Grace does not order pancakes or waffles, but does 

order toast. 4)Grace orders toast, and also orders 

either pancakes or waffles. 

In the first case, Grace has three possible choices for her main dish (oatmeal, 
omelette, or 
nothing). For each of these, she has two choices for her side dish (fruit 

cup, or nothing). For each of these, she has four choices for her beverage 

(coffee, tea, orange juice, or nothing). Using the product rule, we 

conclude that Grace could order 3 2 4 = 24 different breakfasts that do 

not include pancakes, waffles, or toast. 

In the second case, Grace has two possible choices for her main dish 

(pancakes, or waffles). For each of these, she has two choices for her side 

dish (fruit cup, or nothing).  For  each of  these, she has four choices for her 

beverage. In addition, for each of her choices of pancakes oraffles, she can 

choose to have maple syrup, or not (two choices). Using the product 

rule, we conclude that Grace could order 2 2 4 2 = 32 different breakfasts 

that include pancakes or waffles, but not toast. 

In the third case, Grace has three possible choices for her main dish 

(oatmeal, omelette, or nothing). For each of these, she has only one 

possible side dish (toast), but she has four choices for what to put on her 

toast (marmalade, lemon curd, blackberry jam, or nothing). For each of 

these choices, she has four choices of beverage. Using the product rule, 

we conclude that Grace could order 3 4 4 = 48 different breakfasts that 

include toast, but do not include pancakes or waffles. 
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In the final case, Grace has two possible choices for her main dish 

(pancakes, or waffles). She has two choices for what to put on her main 

dish (maple syrup, or only butter). She is having toast, but has four 

choices for what to put on her toast. Finally, she again has four choices 

of beverage. Using the product rule, we conclude that Grace could order 

2 2 4 4 = 64 different breakfasts that include toast as well as either 

pancakes or waffles. 

Using the sum rule, we see that the total number of different 

breakfasts Grace could order is 24 + 32 + 48 + 64 = 168. 

 

Here‟s another example of combining the two rules. 

EXAMPLE 2.15. The types of license plates in Alberta that are available 

to individuals (not corporations or farms) for their cars or motorcycles, fall 

into one of the following categories: 

• vanity plates; 

• regular car plates; 

None of these license plates use the letters 

I or O. 

• veteran plates; or 

• motorcycle plates. 
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Regular car plates have one of two formats: three letters followed by 

three digits; or three letters followed by four digits (in the latter case, none 

of the letters A, E, I, O, U, or Y is used). Veteran plates begin with the letter 

V, followed by two other letters and two digits. Mo- 

torcycle plates have two letters followed by three digits. 

Setting aside vanity plates and ignoring the fact that some three-letter 

words are avoided,  how many license plates are available to individuals in 

Alberta for their cars or motorcycles? 

 

SOLUTION. To answer this question, there is a natural division into four 

cases: regular car plates with three digits; regular car plates with four digits; 

veteran plates;  and  motorcycle plates. 

For a regular car plate with three digits, there are 24 choices for the first 

letter, followed by 24 choices for the second letter, and 24 choices for the 

third letter. There are 10 choices for the first digit, 10 choices for the second 

digit, and 10 choices for the third digit. Using the product rule, the total 

number of license plates in this category is 24
3
 10

3
 = 13, 824, 000. 

For  a regular car plate with four digits, there are 20 choices for the first 

letter, followed by 20 choices for the second letter,  and 20 choices for the 

third letter.  There are 10 choices for    the first digit, 10 choices for the 

second digit, 10 choices for the third digit, and 10 choices for the fourth 

digit.  Using the product rule, the total number of license plates in this 

category is    20
3
 10

4
 = 80, 000, 000. 

For a veteran plate, there are 24 choices for the first letter, followed by 

24 choices for the second letter. There are 10 choices for the first digit, and 
10 choices for the second digit. Using the product rule, the total number of 

license plates in this category is 24
2
 10

2
 = 57, 600. 

Finally, for a motorcycle plate, there are 24 choices for the first letter, 

followed by 24 choices for the second letter. There are 10 choices for the 

first digit, 10 choices for the second digit, and 10 choices for the third 

digit. Using the product rule, the total number of license plates in this 

category is 24
2
 · 10

3
 = 576, 000. 

 

Using the sum rule, we see that the total number of license plates is 

13, 824, 000 + 80, 000, 000 + 57, 600 + 576, 000 

which is 94, 457, 600. 

 

It doesn‟t always happen that the sum rule is applied first to break the 

problem down into cases, followed by the product rule within each case. In 

some problems,  these might occur in  the other order.  Sometimes there 

may  seem to be one “obvious” way  to look at the problem,  but often there 

is more than one equally effective analysis, and different analyses might 
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begin with different rules. 

In Example 2.14, we could have begun by noticing that no matter what 

else she may choose, Grace has four possible options for her beverage. 

Thus, the total number of possible breakfast orders will be four times the 

number of possible orders of main and side (with optional extras). Then 

we could have proceeded to analyse the number of possible choices for 

her main dish and her side dish (together with the extras). Breaking down 

the choices for her main and side dishes into the same cases as before, 

we could see that there are 3 2 = 6 choices in the first case; 

2 2 2 = 8 choices in the second case; 3 4 = 12 choices in the third case; 

and 2 2 4 = 16 choices in the fourth case. Thus she has a total of 6 + 8 + 

12 + 16 = 42 choices for her main and side dishes. The product rule now 

tells us that she has 4 42 = 168 possible orders for her breakfast. 

Let‟s run through one more (simpler) example of using both the sum and 

product rules,     and work out the answer in two different ways. 

EXAMPLE 2.16.  Kathy plans to buy her Dad a shirt for his birthday.  The 

store she goes to   has three different colours of short-sleeved shirts, and six 

different colours of long-sleeved shirts. They will gift-wrap in her choice of 

two wrapping papers. Assuming that she wants the shirt gift-wrapped, how 

many different options does she have for her gift? 

SOLUTION. Let‟s start by applying the product rule first. There are two 

aspects that she can vary:  the shirt, and the wrapping.  She has two  choices 

for the wrapping, so her total number    of options will be twice the number 

of shirt choices that she has. For the shirt, we break her choices down into 

two  cases:  if she opts for a short-sleeved shirt then she has three choices     

(of colour), while if she opts for a long-sleeved shirt then she has six 

choices.  In total she has     3 + 6 = 9 choices for the shirt.  Using the 

product rule, we  see that she has 2   9 = 18 options    for her gift. 

Alternatively, we could apply the sum rule first. We will consider the 

two cases: that she buys a short-sleeved shirt; or a long-sleeved shirt. If 

she buys a short-sleeved shirt, then she has three options for the shirt, 

and for each of these she has two options for the wrapping, making (by 

the product rule) 3 2 = 6 options of short-sleeved shirts. If she buys a 

long-sleeved shirt, then she has six options for the shirt, and for each of 

these she has two options for the wrapping, making (by the product rule) 

6 2 = 12 options of long-sleeved shirts. Using the sum rule, we see that 

she has 6 + 12 = 18 options for her gift. 

 

EXERCISES 2.17. How many passwords can be created with the 

following constraints: 1)The password is three characters long and 

contains two lowercase letters and one digit, 
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in some order. 

2) The password is eight or nine characters long and consists entirely of digits. 

3) The password is five characters long and consists of lowercase letters 

and digits.  All     of the letters must come before all of the digits in 

the password, but there can be any number of letters (from zero 

through five). 

 

4) The password is four characters long and consists of two 

characters that can be either digits or one of 16 special characters, 

and two lowercase letters. The two letters can be in any two of the 

four positions. 

5) The password is eight characters long and must include at least 

one letter and at least one digit. 

6) The password is eight characters long and cannot include any 

character more than once. 

 

EXERCISES 2.18. 

1) There are 8 buses a day from Toronto to Ottawa, 20 from Ottawa 

to Montreal, and 9 buses directly from Toronto to Montreal. 

Assuming that you do not have to complete the trip in one day (so 

the departure and arrival times of the buses is not an issue), how 

many different schedules could you use in travelling by bus from 

Toronto to Montreal? 

2) How many 7-bit ternary strings (that is, strings whose only entries 

are 0, 1, or 2) begin with either 1 or 01? 

 

2D. Summing up 

Very likely you‟ve used the sum rule or the product rule when counting 

simple things, without even stopping to think about what you were 

doing. The reason we‟re going through each of them very slowly and 

carefully, is because whsen we start looking at more complicated problems, 

our uses of the sum and product rules will become more subtle. If we 

don‟t have a very clear understanding in very simple situations of what 

we are doing and why, we‟ll be completely lost when we get to more 

difficult examples. 

It‟s dangerous to try to come up with a simple guideline for when to use 

the product rule   and when to use the sum rule, because such a guideline 

will often go wrong in complicated situations. Nonetheless, a good question 

to ask yourself when you are trying to decide which  rule to use is,  “Would  

I describe this with the word „and,‟  or the word „or‟ ?” The word “and”  is 
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generally used in situations where it‟s appropriate to use the product rule, 

while “or” tends     to go along with the sum rule. 

Let‟s see how this applies to each of the examples we‟ve looked at in this chapter. 

In Example 2.1, you needed to choose the size and the variety for your 

coffee. In Example 2.3, Kyle wanted to choose a doughnut and coffee.  In 

Example 2.4, Chlo ë needed to determine the size and the colour and the 

image and the slogan for each t-shirt. In Example 2.6, we wanted to 

know the sex of Peter and Mary‟s third and fourth children. So in each 

of these examples, we used the product rule. 

In Example 2.8, you needed to choose a bagel or a doughnut. In Example 

2.10, Mary and Peter could have zero or one or two or three children.  So in 

each of these examples, we  used  the sum rule. 

You definitely have to be careful in applying this guideline, as 

problems can be phrased in a misleading way. We could have said that in 

Example 2.8, we want to know how many different kinds of doughnuts 

and of bagels there are, altogether. The important point is that you aren‟t 

choosing both of these things, though; you are choosing just one thing, 

and it will be either a doughnut, or a bagel. 

In Example 2.14, Grace was choosing a main dish and a side dish and a 

beverage, so we used the product rule to put these aspects together.  

Whether or not she had extra options available   for her main dish depended 

on whether she chose pancakes or waffles or oatmeal or omelette   or 

nothing, so the sum rule applied here. (Note that we didn‟t actually consider 

each of these  four things separately, since they naturally fell into two 

categories. However, we would have reached the same answer if we had 

considered each of them separately.) Similarly, whether or not she had 

extra options available for her side dish depended on whether she chose 

toast or not, so again the sum rule applied. 

In Example 2.15, the plates can be regular (in either of two ways) or 

veteran or motorcycle plates, so the sum rule was  used.  In each of these 

categories,  we  had to consider the options  for the first character and the 

second character (and so on), so the product rule applied. 

Finally, in Example 2.16, the shirt Kathy chooses can be short-sleeved or 

long-sleeved, so the sum rule applies to that distinction. Since she wants to 

choose a shirt and gift wrap, the product rule applies to that combination. 

EXERCISES 2.19. For each of the following problems, do you need to use 

the sum rule, the product rule, or both? 

1) Count all of the numbers that have exactly two digits, and the 

numbers that have exactly four digits. 

2) How many possible outcomes are there from rolling a red die  and  a  

yellow  die? 3)How many possible outcomes are there from rolling 
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three dice, if you only count the 
outcomes that involve at most one of the dice coming up as a one? 

 

 

Permutations, Combinations, and the Binomial Theorem 

 

The examples we looked at in Chapter 2 involved drawing things from an 

effectively infinite population – they couldn‟t run out. When you are 

making up a password, there is no way you‟re going to “use up” the letter b 

by including it several times in your password. In Example 2.4, Chloë‟s  

suppliers  weren‟t  going  to  run  out  of  blue  t-shirts  after  printing  some  

of  her  order, and be unable to complete the remaining blue t-shirts she‟d 

requested. The fact that someone  has already had one daughter doesn‟t 

mean they‟ve used up their supply of X chromosomes so won‟t have 

another daughter. 

In this chapter, we‟ll look at situations where we are choosing more than 

one item from a finite population in which every item is uniquely identified 

– for example, choosing people from a family, or cards from a deck. 

 

3A. Permutations 

We begin by looking at permutations, because these are a 

straightforward application of the product rule. The word “permutation” 

means a rearrangement, and this is exactly what a permutation is: an 

ordering of a number of distinct items in a line. Sometimes even though 

we have a large number of distinct items, we want to single out a smaller 

number and arrange those into a line; this is also a sort of permutation. 

DEFINITION 3.1. A permutation of n distinct objects is an arrangement 

of those objects into an ordered line.  If 1   r    n (and r is a natural number) 

then an r-permutation of n objects    is an arrangement of r of the n objects 

into an ordered line. 

So a permutation involves choosing items from a finite population in 

which every item is uniquely identified, and keeping track of the order in 

which the items were chosen. 

Since we are studying enumeration, it shouldn‟t surprise you that what 

we‟ll be asking in  this situation is how many permutations there are, in a 

variety of circumstances.  Let‟s begin  with an example in which we‟ll 

calculate the number of 3-permutations of ten objects (or in    this case, 

people). 

18 
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EXAMPLE 3.2. Ten athletes are competing for Olympic medals in 

women‟s speed skating (1000 metres). In how many ways might the 

medals end up being awarded? 

 

SOLUTION. There are three medals: gold, silver, and bronze, so this 

question amounts to finding the number of 3-permutations of the ten 

athletes (the first person in the 3-permutation is the one who gets the 

gold medal, the second gets the silver, and the third gets the bronze). To 

solve this question, we‟ll apply the product rule, where the aspects that 

can vary are the winners of the gold, silver, and bronze medals. We begin 

by considering how many different athletes might get the gold medal. 

The answer is that any of the ten athletes might get that medal. No 

matter which of the athletes gets the gold medal, once that is decided we 

move our consideration to the silver medal. Since one of the athletes has 

already been awarded the gold medal, only nine of them remain in 

contention for the silver medal, so for any choice of athlete who wins 

gold, the number of choices for who gets the silver medal is nine. 

Finally, with the gold and silver medalists out of contention for the 

bronze, there remain eight choices for who might win that medal. Thus, 

the total number of ways in which the medals might be awarded 

is 10 · 9 · 8 = 720. 

We can use the same reasoning to determine a general formula for 

the number of r- permutations of n objects: 

THEOREM 3.3. The number of r-permutations of n objects is n(n − 1) . . . (n − r + 1). 

PROOF. There are n ways in which the first object can be chosen (any of 

the n objects). For each of these possible choices, there remain n − 1 objects 

to choose for the second object, etc. 

It will be very handy to have a short form for the number of permutations of n 

objects. 

NOTATION 3.4. We use n! to denote the number of permutations of n objects, so 

n! = n(n − 1) . . . 1. 

By convention, we define 0! = 1. 

DEFINITION 3.5. We read n! as “n factorial,” so n factorial is n(n − 1) . . . 1. 

Thus, the number of r-permutations of n objects can be re-written as n!/(n r)!. When 

n = r 

this gives n!/0! = n!, making sense of our definition that 0! = 1. 
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EXAMPLE 3.6. There are 36 people at a workshop. They are seated at 

six round tables of six people each for lunch. The Morris family (of 

three) has asked to be seated together (side-by- side). How many 

different seating arrangements are possible at the Morris family‟s table? 

 

SOLUTION. First, there are 3! = 6 ways of arranging the order in which 

the three members of the Morris family sit at the table. Since the tables 

are round, it doesn‟t matter which specific seats they take, only the order 

in which they sit matters. Once the Morris family is seated, the three 

remaining chairs are uniquely determined by their positions relative to 

the Morris family (one to their right, one to their left, and one across 

from them).  There are 33 other people   at the conference; we need to 

choose three of these people and place them in order into the three 

vacant chairs. There are 33!/(33 3)! = 33!/30! ways of doing this. In total, 

there are 6(33!/30!) = 196, 416 different seating arrangements possible at 

the Morris family‟s table. 

 

By adjusting the details of the preceding example, it can require some 

quite different thought processes to find the answer. 

 

EXAMPLE 3.7. At the same workshop, there are three round dinner 

tables, seating twelve people each. The Morris family members (Joy, 

Dave, and Harmony) still want to sit at the same table, but they have 

decided to spread out (so no two of them should be side-by-side) to meet 

more people. How many different seating arrangements are possible at the 

Morris family‟s table now? 

SOLUTION. Let‟s begin by arbitrarily placing Joy somewhere at the table, 

and seating everyone else relative to her. This effectively distinguishes the 

other eleven seats. Next,  we‟ll consider  the nine people who aren‟t in Joy‟s 

family, and place them (standing) in an order clockwise around the table 

9 J 1 

8 2 

7 3 

6 

5 

4 
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from her. There are 33!/(33 9)! ways to do this.  Before we  actually assign  

seats to these nine people, we decide where to slot in Dave and Harmony 

amongst them. 

 

 

 

 

 

(In the above diagram,  the digits 1 through 9 represent the nine other 

people who are sitting      at the Morris family‟s table,  and the J represents 

Joy‟s position.)  Dave  can sit between any   pair of non-Morrises who are 

standing beside each other; that is, in any of the spots marked by small black 

dots in the diagram above. Thus, there are eight possible choices for where 

Dave will sit. Now Harmony can go into any of the remaining seven spots 

marked by  black dots.  Once Dave and Harmony are in place, everyone 

shifts to even out the circle (so the remaining black dots disappear), and 

takes their seats in the order determined. 

We have shown that there are 33!/24! 8 7 possible seating 

arrangements at the Morris table. That‟s a really big number, and it‟s 

quite acceptable to leave it in this format. However, in case you find 

another way to work out the problem and want to check your answer, the 

total number is 783, 732, 837, 888, 000. 

 

EXERCISES 3.8. Use what you have learned about permutations to 

work out the following problems. The sum and/or product rule may also 

be required. 

1) Six people,  all of whom can play both bass and guitar,  are 

auditioning for a band.  There are two spots available: lead guitar, 

and bass player. In how many ways can the band be completed? 

2) Your friend Garth tries out for a play. After the auditions, he texts 

you that he got  one of the parts he wanted, and that (including 

him) nine people tried out for the five roles. You know that there 

were two parts that interested him. In how many ways might the 

cast be completed (who gets which role matters)? 

3) You are creating an 8-character password. You are allowed to use 

any of the 26 lower- case characters, and you must use exactly one 

digit (from 0 through 9) somewhere in 

 

the password. You are not allowed to use any character more than 

once. How many different passwords can you create? 
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4) How many 3-letter “words” (strings of characters, they don‟t 

actually have to be words) can you form from the letters of the word 

STRONG? How many of those words contain an s? (You may not 

use a letter more than once.) 

5) How many permutations of 0, 1, 2, 3, 4, 5, 6  have no adjacent even 

digits? For example, a permutation like 5034216 is not allowed 

because 4 and 2 are adjacent. 

 

3B. Combinations 

Sometimes the order in which individuals are chosen doesn‟t matter; all that 

matters is whether or not they were chosen. An example of this is choosing 

a set of problems for an exam. Although the order in which the questions 

are arranged may make the exam more or less intimidating,  what really 

matters is which questions are on the exam, and which are not. Another 

example would be choosing shirts to pack for a trip (assuming all of your 

shirts are distinguishable from each other). We call a choice like this a 

“combination,” to indicate that it is the collection of things chosen that 

matters, and not the order. 

DEFINITION 3.9.  Let n be a positive natural number,  and 0      r     n.  Assume that 

we  have 

n distinct objects.  An r-combination of the n objects is a subset consisting of r of the 

objects. 

So a combination involves choosing items from a finite population in 

which every item is uniquely identified, but the order in which the choices 

are made is unimportant. 

Again, you should not be surprised to learn (since we are studying 

enumeration) that what we‟ll be asking is how many combinations there are, 

in a variety of circumstances. One signifi- cant difference from 

permutations is that it‟s not interesting to ask how many n-combinations 

there are of n objects; there is only one, as we must choose all of the 

objects. 

Let‟s begin with an example in which we‟ll calculate the number of 3-

combinations of ten objects (or in this case, people). 

EXAMPLE 3.10. Of the ten athletes competing for Olympic medals in 

women‟s speed skating (1000 metres), three are to be chosen to form a 

committee to review the rules for future competitions. How many different 

committees could be formed? 

SOLUTION. We  determined in Example 3.2 that there are 10!/7! ways  in 
which the medals  can be assigned. One easy way to choose the committee 
would be to make it consist of the three medal-winners.  However, notice 
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r 

. 
Σ 

that if (for example) Wong wins gold, Šajna wins silver, 
and  Andersen  wins  bronze,  we  will  end  up  with  the  same  committee  as  
if  Šajna  wins  gold, Andersen wins silver, and Wong wins bronze. In 
fact, what we‟ve learned about permutations tells us that there are 3! 
different medal outcomes that would each result in the committee being 
formed of Wong, Šajna, and Andersen. 

In fact, there‟s nothing special about Wong, Šajna, and Andersen – for any choice 
of three 

people to be on the committee,  there are 3! = 6 ways  in which those 

individuals could have been awarded the medals. Therefore, when we 

counted the number of ways in which the medals could be assigned, we 

counted each possible 3-member committee exactly 3! = 6 times. So the 

number of different committees is 10!/(7!3!) = 10 · 9 · 8/6 = 120. 

We can use the same reasoning to determine a general formula for the 

number of r- combinations of n objects: 

THEOREM 3.11. The number of r-combinations of n objects is 
n! 

. 
r!(n − r)! 

 

PROOF. By Theorem 3.3, there are n!/(n r)! r-permutations of n objects. 

Suppose that we knew there are k unordered r-subsets of n objects (i.e. r-

combinations). For each of these k unordered subsets, there are r! ways 

in which we could order the elements. This tells us that k · r! = n!/(n − 

r)!. Rearranging the equation, we obtain k = n!/(r!(n − r)!). 

It will also prove  extremely useful to have a short form for the number 

of r-combinations   of n objects. 

NOTATION 3.12. We use 
.nΣ 

to denote the number of r-combinations of n objects, so 
.

n
Σ 

=  
  n!  

.
 

r r!(n − r)! 
 

DEFINITION 3.13. We read 
n
 as “n choose r,” so n choose r is 

n!/[r!(n − r)!]. Notice that when r = n, we have 

.
n
Σ 

=  
  n!   

=  
  n!    

=  
n!  

= 1,
 

r n!(n − n)! n!0! n! 

coinciding with our earlier observation that there is only one way in which 

all of the n objects can be chosen. Similarly, 
.

n
Σ 

=  
  n!   

= 1;
 

0 0!(n − 0)! 
there is exactly one way of choosing none of the n objects. 

Let‟s go over another example that involves combinations. 

EXAMPLE 3.14. Jasmine is holding three cards from a regular deck of 
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! 

1!10
! 

2 2 

she is holding two; these can be chosen in 
12 = 66 ways. If she is holding the King but 

not 

playing cards. She tells you that they are all hearts, and that she is holding at 

least one of the two highest cards in the  suit (Ace and King). If you wanted 

to list all of the possible sets of cards she might be holding, how long would 

your list be? 

SOLUTION. We‟ll consider three cases: that Jasmine is holding the 

Ace (but not the King); that she is holding the King (but not the Ace), or 

that she is holding both the Ace and the King. 

If Jasmine is holding the Ace but not the King,  of the eleven other 
cards in the suit of   hearts she must be holding two. There are  

11
 possible 

choices for the cards she is holding in 

this case. 

Similarly, if Jasmine is holding the King but not the Ace, of the eleven 
other cards in the   suit of hearts she must be holding two. Again, there 
are 

11
 possible choices for the cards she 

is holding in this case. 

Finally, if Jasmine is holding the Ace and the King, then she is holding 
one of the other eleven cards in the suit of hearts. There are 

11
 possible 

choices for the cards she is holding in 

this case. 
In total, you would have to list 

.
11

Σ 
+ 
.

11
Σ 

+ 
.

11
Σ 

=  
 11! 

 
11
! 

+ 

+
 11! 

= 
11 · 10 

+ 
11 · 10 

+ 11 = 55 + 55 + 11 = 121 

 

possible sets of cards. 

Here is another analysis that also works:  Jasmine has at least one of the 

Ace and the King,  so let‟s divide the problem into two cases: she might be 

holding the Ace, or she might be holding the King but not the Ace. If she 

is holding the Ace, then of the twelve other hearts, 

2 
the Ace, then as before, her other two cards can 

be chosen in of 121. 

 

.11Σ 

 
 

 

= 55 ways, for a total (again) 

 
 

2 

2!9
! 
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.   Σ
cases includes  = 66 possible combinations of cards, for a total of 132.  

The problem with 

1 

. 
Σ 

♦ ♣ ♠ 
♣ ♦ ♠ 

 

A common mistake in an example like this, is to divide the problem into 

the cases that Jasmine is holding the Ace, or that she is holding the King, 

and to determine that each of these 
12 
2 

this analysis is that we‟ve counted the combinations that include both the Ace and 
the King 
twice: once as a combination that includes the Ace, and once as a 

combination that includes the King. If you do this, you need to 

compensate by subtracting at the end the number of combinations that 

have been counted twice: that is, those that include the Ace and the 

King. As we worked out in the example, there are 
11

 = 11 of these, 

making a total of 132 − 11 = 121 
combinations. 

EXERCISES 3.15. Use what you have learned about combinations to work 

out the following problems. Permutations and other counting rules we‟ve 

covered may also be required. 

1) For a magic trick,  you ask a friend to draw three cards from a 

standard deck of 52  cards. How many possible sets of cards might 

she have chosen? 

2) For the same trick, you insist that your friend keep replacing her first 

draw until she draws a card that isn‟t a spade. She can choose any 

cards for her other two cards. How many possible sets of cards might 

she end up with? (Caution:  choosing 5  , 6  , 3  in that order, is not  

different from choosing 6  , 5   , 3   in that order.  You  do not  need   

to take into account that some sets will be more likely to occur 

than others.) 

3) How many 5-digit numbers contain exactly two zeroes? (We insist 

that the number contain exactly 5 digits.) 

4) Sandeep,  Hee,  Sara,  and Mohammad play euchre with a standard 

deck consisting of  24 cards (A, K, Q, J, 10, and 9 from each of the 

four suits of a regular deck of playing cards). In how many ways can 

the deck be dealt so that each player receives 5 cards, with 4 cards 

left in the middle, one of which is turned face-up? The order of the 3 

cards that are left face-down in the middle does not matter,  but who 

receives a particular     set of 5 cards (for example, Sara or Sandeep) 

does matter. 

5) An ice cream shop has 10 flavours of ice cream and 7 toppings. Their 

megasundae consists of your choice of any 3 flavours of ice cream 

and any 4 toppings. (A customer must choose exactly three different 

flavours of ice cream and four different toppings.) How many 
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. Σ
tells us that there are  = 6 ways in which to choose the factors from which 

you take the as 

. Σ 
= 4 ways in which to choose the factors from which you take the as. (Specifically, these 

. Σ 
= 4 ways in which to choose the factors from which you take the as. (Specifically, these 

0 

. 
Σ 

4 
4 

different megasundaes are there? 

 

 

3C.   The   Binomial   

Theorem Here is an algebraic example in which “n 

choose r” arises naturally. EXAMPLE 3.16. Consider 

(a + b)
4
 = (a + b)(a + b)(a + b)(a + b). 

If you try to multiply this out,  you must systematically choose the  a or the 

b from each of     the four factors, and make sure that you make every 

possible combination of choices sooner or later. 

One way of breaking this task down into smaller pieces, is to separate it 
into five parts, depending on how many of the factors you choose as from 
(4, 3, 2, 1, or 0). Each time you choose 4 of the as, you will obtain a single 
contribution to the coefficient of the term a

4
; each time you choose 3 of the 

as, you will obtain a single contribution to the term a
3
b; each time you 

choose 2 of the as, you will obtain a single contribution to the term a
2
b

2
; 

each time you choose 1 of the as,  you will obtain a single contribution to 
the term ab

3
; and each time you choose 0   of the as, you will obtain a 

single contribution to the term b
4
. In other words, the coefficient   

of a particular term a
i
b

4−i
 will be the number of ways in which you can 

choose i of the factors from which to take an a, taking a b from the other 4 − 
i factors (where 0 ≤ i ≤.4)Σ. 

 

choose four factors from which to take as.  (Clearly,  you must choose an a 
from every one of         the four factors.) Thus, the coefficient of a

4
 will 

be 1. 
If you want to take as from three of the four factors, Theorem 3.11 tells us that there 
are 

4 
3 

four ways consist of taking the b from any one of the four factors, and the as from the 
other 
three factors). Thus, the coefficient of a

3
b will be 4. 

If you want to take as from two of the four factors, and bs from the other two, Theorem 
3.11 

4 
2 

(then take bs from the other two factors). This is a small enough example that you could 
easily 
work out all six ways by hand if you wish. Thus, the coefficient of a

2
b

2
 will be 6. 

If you want to take as from one of the four factors, Theorem 3.11 tells us that there 
are 

4 
1 

four ways  consist of taking the a from any one of the four factors, and the bs from the 
other 
three factors). Thus, the coefficient of ab

3
 will be 4. 

Finally,  by  Theorem 3.11,  there is    
4
  = 1 way  to choose zero factors from 

= 1 way 
to 
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4 3 2 1 0 

which to take       as.  (Clearly, you must choose a b from every one of the four 
factors.)  Thus, the coefficient of         b

4
 will be 1. 

Putting all of this together, we see that 

(a + b)
4
 = a

4
 + 4a

3
b + 6a

2
b

2
 + 4ab

3
 + b

4
. 

In fact, if we leave the coefficients in the original form in which we 

worked  them out,  we  see that 

(a + b)
4
 = 
.

4
Σ

a
4
 + 
.

4
Σ

a
3
b + 

.
4
Σ

a
2
b

2
 + 
.

4
Σ

ab
3
 + 
.

4
Σ

b
4
. 

This example generalises into a significant theorem of mathematics: 

THEOREM 3.17.Binomial Theorem For any a and b, and any natural number n, we have 

 

 

 

One special case of this 
is that 

 

(a + b)
n
 

= 

Σ

r

=0 

.
n

Σ 

 
 

 

arbn−r. 

 

(1 + x)
n
 = 

Σ

r

=0 

.
n

Σ 

 
 

 

x
r
. 

r 

r 
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. 
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r 

For the special case, begin by observing that 
(1 + x) 

n 

n 

n 

n 

Σ
1) 

 

PROOF. As in Example 3.16, we see that the coefficient of a
r

b
n−r

 in (a+b)
n
 

will be the number of ways  of choosing r of the n factors from which we‟ll 

take the a (taking the b from the other        n − r factors). By Theorem 3.11, 

there are 
n
 ways of making this choice. 

    
in the general formula. Use the fact that 1

n−r
 = 1 for any integers n and r. 

 

Thus, the values 
n
 are the coefficients of the terms in the Binomial Theorem. 

DEFINITION 3.18. Expressions of the form 
n
 are referred to as binomial coefficients. 

There are some nice, simple consequences of the binomial theorem. 

COROLLARY 3.19. For any natural number n, we have 

Σ

r=0 

.
n

Σ 

 
 

 

= 2
n
. 

 

PROOF. This is an immediate consequence of substituting a = b = 1 into 

the Binomial Theo- rem. 

 

COROLLARY 3.20. For any natural number n, we have 

Σ

r=0 
r
.

n

Σ 
(−1)

r−1
 = 0. 

 

PROOF. From the special case of the Binomial Theorem, we have 
 

(1 + x)
n
 = 

 
If we differentiate both sides, we 
obtain 

Σ

r

=0 

.
n

Σ 

 
 

 

x
r
. 

 

n(1 + x)
n−1

 = 
Σ

r

=0 

 Σ 

xr−1. 

Substituting x = −1 gives the result (the left-hand side is zero). 

EXERCISES 3.21. Use the Binomial Theorem to evaluate the following: 

n 
i=
1 

.nΣ
2i.

 

r 

r 

; then take a = x and b = 
1 

n = (x + 
1) 

n 

r 

r 
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i 

2)the coefficient of a
2
b

3
c

2
d

4
 in (a + b)

5
(c 

+ d)
6
. 3)the coefficient of a

2
b

6
c

3
 in (a + 

b)
5
(b + c)

6
. 

4)the coefficient of a
3
b

2
 in (a + b)

5
 + (a + b

2
)

4
. 

 
Counting   with Repetitions 

 

In counting combinations and permutations, we assumed that we were 

drawing from a set in which all of the elements are distinct. Of course, it is 

easy to come up with a scenario in which some of the elements are 

indistinguishable. We need to know how to count the solutions to problems 

like this, also. 

 

5A. Unlimited repetition 

For many practical purposes, even if the number of indistinguishable 

elements in each class is not actually infinite, we will be drawing a small 

enough number that we will not run out. The bagel shop we visited in 

Example 2.8 is not likely to run out of one variety of bagel before filling a 

particular order. In standard card games, we never deal enough cards to a 

single player that they might have all of the cards of one suit and still be 

getting more cards. 

This is the sort of scenario we‟ll be studying in this section. The set-up 

we‟ll use is to  assume that there are n different “types” of item, and there 

are enough items of each type that  we won‟t run out. Then we‟ll choose 

items, allowing ourselves to repeatedly choose items of the same type as 

many times as we wish, until the total number of items we‟ve chosen is r. 

Notice that (unlike in Chapter 3), in this scenario r may exceed n. 

We‟ll consider two scenarios:  the order in which we  make the choice 

matters, or the order  in which we make the choice doesn‟t matter. 

EXAMPLE 5.1. Chris has promised to bring back bagels for three friends 

he‟s studying with  (as well as one for himself). The bagel shop sells eight 

varieties of bagel.  In how many ways  can he choose the bagels to give to 

Jan, Tom, Olive, and himself? 

 

SOLUTION. Here, it matters who gets which bagel. We can model this by 

assuming that the first bagel Chris orders will be for himself, the second for 

Jan, the third for Tom,  and the last   for Olive. Thus, the order in which he 

asks for the bagels matters. 

We actually saw back in Chapter 2 how to solve this problem. It‟s just an 

application of the product rule! Chris has eight choices for the first bagel; 
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for each of these, he has eight choices  for the second bagel;  for each of 

these,  he has eight choices for the third bagel;  and for each    of these, he 

has eight choices for the fourth bagel. So in total, he has 8
4
 ways to choose 

the bagels. 

 

OK, so if the order in which we make the choice matters, we just use 

the multiplication rule. What about if order doesn‟t matter? 

33 
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.   Σ
know that this can be done in 

 ways. 

 

EXAMPLE 5.2. When Chris brought back the bagels, it turned out that 

he‟d done a poor job of figuring out what his friends wanted. They all 

traded around. Later that night, they sent him to the doughnut store, but 

this time they told him to just bring back eight doughnuts and they‟d 

figure out who should get which. If the doughnut store has five varieties, 

how many ways are there for Chris to fill this order? 

SOLUTION. Let‟s call the five varieties chocolate, maple, boston cream, 

powdered, and jam- filled. One way to describe Chris‟ order would be to 

make a list in which we  first write one  c  for each chocolate doughnut, then 

one m for each maple doughnut, then one b for each boston cream 

doughnut, then one p for each powdered doughnut, and finally one j for 

each jam-filled doughnut. Since Chris is ordering eight doughnuts, there 

will be eight letters in this list. Notice that there‟s more information 

provided by  this list than we  actually need.  We  know that all     of the first 

group of letters are cs, so instead of writing them all out, we could simply 

put a dividing marker after all of the cs and before the first m. Similarly, we 

can put three more dividing markers in to separate the ms from the bs, the 

bs from the ps, and the ps from the        js. Now we have a list that might 

look something like this: 

cc||bbb|ppp| 

(Notice in this possible list, Chris chose no maple or jam-filled doughnuts.) 

Now, we don‟t actually need to write down the letters c, m,  b and so on,  

as long as we  know how many spaces they take up; we know that any 

letters that appear before the first dividing marker are cs, for example. Thus, 

the following list gives us the same information as  the list above: 

 

Similarly, if we see 

the list 

  ||  |  | 

 

|  |  |  |   

we understand that Chris ordered no chocolate doughnuts; two maple 

doughnuts; two boston cream doughnuts; three powdered doughnuts; 

and one jam-filled doughnut. 

So an equivalent problem is to count the number of ways of arranging 

eight underlines and four dividing markers in a line. This is something we 

already understand! We have twelve positions that we need to fill, and the 

problem is: in how many ways can we fill eight of the twelve positions with 

underlines (placing dividing markers in the other four positions). We 
12 
8 

 

This technique can be used to give us a general formula for counting the 
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r 

are choosing r objects, we will need r underlines, for a total of. n + rΣ− 1 positions to be 

filled. 

number of ways of choosing r objects from n types of objects, where we are 

allowed to repeatedly choose objects  of the same type. 

THEOREM 5.3. The number of ways of choosing r objects from n types of 

objects (with re- placement or repetition allowed) is 

.
n + r − 1

Σ
.
 

PROOF. We use the same idea as in the solution to Example 5.2, above.  

Since there are n 

different types of objects, we will need n − 1 dividing markers to keep them 

apart.  Since  
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case) put dividing markers into the remaining n − 1 positions. Thus, 
there are 

r 

. Σ 

We can choose the r positions in which the objects will go in n+r 1 ways, and then (in 

each 
.n+r−1Σ 

 
 

 
 

Again, we will want to have a short form for this value. 

 

 

 

  

NOTATION  5.4. We use 
n
 to denote the number of ways of choosing r 

objects from n types of objects (with replacement or repetition allowed), so 

..
n
ΣΣ 

= 
.

n + r − 1
Σ

.
 

The reason we say “replacement or repetition” is because there is another 

natural model for this type of problem.  Suppose that instead of choosing 

eight bagels from five varieties, Chris    is asked to put his hand into a bag 

that contains five different-coloured pebbles, and draw one out; then replace 

it, repeatedly (with eight draws in total).  If he  keeps count  of  how many 

times he draws each of the rocks, the number of possible tallies he‟ll end up 

with is exactly the same as the number of doughnut orders in Example 5.2. 

The following table summarises some of the key things we‟ve learned about counting 

so far: 

 

 

Table 5.1. The number of ways to choose r objects from n objects (or 

types of objects) 

 

 

 
repetition 

allowed 

repetition not 

allowed 

 

order matters nr n!  
(n − r)! 

order doesn’t 

matter 

..
n
ΣΣ 

r 

.
n
Σ 

r 

 

 

 

choose r objects from n types of objects, if repetition or replacement of choices is 
allowed. 

r 
ways 
to 

r r 
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k k k−1 

k k 

3)For  k, n ≥ 1, 
. 

k+1
Σ  

= 
.

n+k−1
Σ
. 

EXERCISES 5.5. Evaluate the following problems. 

1) Each of the ten sections in your community band (trombones, flutes, 

and so on) includes at least four people. The conductor needs a 

quartet to play at a school event. How many different sets of 

instruments might end up playing at the event? 

2) The prize bucket at a local fair contains six types of prizes. Kim wins 

4 prizes; Jordan wins three prizes, and Finn wins six. Each of the 

kids plans to give one of the prizes he has won to his teacher, and 

keep the rest. In how many ways can their prizes (including the gifts 

to the teacher) be chosen? (It is important which gift comes from 

which child.) 

3) There are three age categories in the local science fair: junior, 

intermediate, and senior. The judges can choose nine projects in 

total to advance to the next level of competition, and they must 

choose at least one project from each age group. In how many 

ways can the projects that advance be distributed across the age 

groups? 

 
EXERCISES 5.6. Prove the following combinatorial identities: 

1)For k, n ≥ 1, 
. nΣ 

= 
. n−1Σ 

+ 
. n Σ 

. 

2)For  k, n ≥ 1, 
. nΣ  

= 
.n+k−1Σ

. 

 

n−1 
4) For 1 n k, 

n
 

k−n 

k 

= 
k−1 . k−n 
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EXERCISES 5.7. Solve the following problems. 

1) Find the number of 5-lists of the form ( x1, x2, x3, x4, x5), where each xi 
is a nonnegative integer and x1 + x2 + x3 + x4 + 3x5 = 12. 

2) We will buy 3 pies (not necessarily all different) from a store that 

sells 4 kinds of pie. How many different orders are possible? List all 

of the possibilities (using A for apple, B for blueberry, C for cherry, 

and D for the other one). 

3) Suppose Lacrosse balls come in 3 colours: red, yellow, and blue. 

How many different combinations of colours are possible in a 6-

pack of Lacrosse balls? 

4) After expanding ( a + b + c + d)
7
 and combining like terms, how many 

terms are there? [Justify your answer without performing the 

expansion.] 

 

 

5B. Sorting a set that contains repetition 

In the previous section, the new work came from looking at combinations 

where repetition or replacement is allowed. For our purposes, we assumed 

that the repetition or replacement was effectively unlimited; that is, the store 

might only have 30 cinnamon raisin bagels, but since Chris was only 

ordering four bagels, that limit didn‟t matter. 

In this section, we‟re going to consider the situation where there are a 

fixed number of objects in total; some of them are “repeated” (that is, 

indistinguishable from one another), and  we want to determine how many 

ways they can be arranged (permuted). This can arise in a variety of 

situations. 

EXAMPLE 5.8. When Chris gets back from the doughnut store run, he 

discovers that Mo- hammed, Jing, Karl, and Sara have joined the study 

session. He has bought two chocolate doughnuts, three maple doughnuts, 

and three boston cream doughnuts. In how many ways can the doughnuts 

be distributed so that everyone gets one doughnut? 

 

SOLUTION. Initially, this looks a lot like a permutation question: we 

need to figure out the number of ways to arrange the doughnuts in some 

order, and give the first doughnut to the first student, the second 

doughnut to the second student, and so on. 

The key new piece in this problem is that, unlike the permutations we‟ve 

studied thus far,  the two chocolate doughnuts are indistinguishable (as are 

the three maple doughnuts and the three boston cream doughnuts).   This 
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. Σ. 
Σ 2 3 

• ≤ ≤ 

2 3 2!6
! 

3!3
! 

2!3!3
! 

means that there is no difference between giving the     first chocolate 

doughnut to Tom and the second to Mohammed, and giving the first 

chocolate doughnut to Mohammed and the second to Tom. 

One way to solve this problem is to look at it as a series of combinations 

of the people, rather than as a  permutation  question  about  the  doughnuts.  

Instead  of  arranging  the  doughnuts, we can first choose which two of the 

eight people will receive the two chocolate doughnuts.  Once that is done, 

from the remaining six people, we choose which three will receive maple 

doughnuts. Finally, the remaining three people receive boston cream 

doughnuts. Thus, the solution is 
8
 
6
 . 

Another approach is more like the approach we used to figure out how 

many r-combinations there are of n objects. In this approach, we begin by  

noting that we would be able to arrange  the eight doughnuts in 8! orders if 

all of them were distinct. For any fixed choice of two people who receive the 

chocolate doughnuts, there are 2! ways in which those two chocolate 

doughnuts could have been distributed to them, so in the 8! orderings of the 

doughnuts, each of these choices for who gets the chocolate doughnuts has 

been counted 2! times rather than once. Similarly, for any fixed choice of 

three people who receive the maple doughnuts, there are 3! ways in which 

these three maple doughnuts could have been distributed to them, and 

each of these choices has been counted 3! times rather than once. The 

same holds true for the three boston cream doughnuts. Thus, the solution 

is 8!/(2!3!3!). 
Since 

.
8
Σ.

6
Σ 

=  
  8!   

· 
  6!    

=  
   8!    

,
 

 

we see that these solutions are in fact identical although they look different. 

 

This technique can be used to give us a general formula for counting 

the number of ways     of arranging n objects some of which are 

indistinguishable from each other. 

THEOREM 5.9. Suppose that: 

• there are n objects; 

for each  i with 1 i m, ri of them are of type i (indistinguishable 

from each other); and 

• r1 + . . . + rm = n. 

Then the number of arrangements (permutations) of these n objects is 

n! 
. 

r1!r2! . . . rm! 
 



 

MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE – MRCET Page 40 
 

rm 

.
 
Σ 

r1 r2 rm 

PROOF. We use the same idea as in the solution to Example 5.8, above. 

Either approach will work, but we‟ll use the first. There will be n 

positions in the final ordering of the objects. We begin by choosing r1 of 
these to hold the objects of type 1. Then we choose r2 of them to hold the 

objects of type 2, and so on. Ultimately, we choose the final rm locations 

(in 
rm = 1 

possible way) to hold the objects of type m. 
Using the product rule, the total number of arrangements is 

. 
n 
Σ.

n − r1
Σ 

. . . 
.

n − r1 − . . . − rm−1
Σ

 

= 
  n! 

·
  (n − r1)! · . . . · 

(n − r1 − . . . − rm−1)! 
r1!(n − r1)! 

n! 
= , 

r1!r2! . . . rm! 

r2!(n − r1 − r2)! rm!0! 



 

 

UNIT-4 

RECURRENCE RELATIONS 

 

Second Order Recurrence Relations 

In the previous section we saw how to solve first order linear recurrence 

relations.  This is when an is given by a linear formula of an-1, i.e. 

an   =   pnan-1  +  sn 

where pn and sn are given sequences.  In this section and the next we look at 

second order linear recurrence relations when an is given by a linear formula 

of an-1 and an-2, i.e 

an   =   pnan-1  +  qnan-2  +  sn 

where pn, qn and sn are given sequences.  For simplicity we concentrate on 

the constant coefficient case when pn and qn don't vary with n, i.e. 

(1) an   =   pan-1  +  qan-2  +  sn 

where p and q are just numbers.  In this section we look at the situation 

where the recurrence relation is homogeneous which is when rn = 0 for all n, 

i.e. 

(2) an   =   pan-1  +  qan-2 

In the next section we look at the inhomogeneous case (1). 

We illustrate the method of solution of equations of the form (2) with the 

following example. 

Example 1.  Consider the equation 

(3) an   =   an-1  +  2an-2 

along with the initial conditions 

(4) a0   =   2  and  a1   =   3 

(3) is the special case of (2) when p = 1 and q = 2. 

To solve equations of the form (2) we start by looking for solutions which 

have the special form  



 

 

(5) an   =   r
n
 

where r is a number to be determined.  To determine r we substitute into (2).  

We illustrate this with (3).  If an is given by (3) then 

(6) an-1   =   r
n-1

 

and 

(7) an-2   =   r
n-2

 

Substituting (5), (6) and (7) into (3) gives 

 r
n
   =   r

n-1
  +  2r

n-2
 

Divide this by r
n-2

 giving 

 r
2
   =   r  +  2 

or 

 r
2
  -  r  -  2   =   0 

This is called the characteristic equation.  It is a quadratic equation.  The 

roots are the values of r in the solutions an = r
n
.  To solve we either factor or 

use the quadratic formula.  In this case we can factor. 

 (r – 2)(r + 1)   =   0 

This equation has two solutions 

 r1   =   2    and    r2   =   - 1 

Recall the r is a number such that (5) is a solution to (3).  This gives the 

following two solutions to (3) 

 an   =   2
n
    and    an   =   (- 1)

n
  

Neither of these solutions satisfy the initial conditions (4).  In order to get a 

solution which satisfies (4) we need to take a superposition of these two 

solutions, i.e. multiply them by constants and add.  We can do this because 

of the following 

Superposition Principle.  If an and bn are two solutions of the equation (2) 



 

 

then so are 

 an  +  bn 

 Aan 

 Aan  +  Bbn 

for any constants A and B. 

Proof.  By hypothesis we have 

(8) an   =   pan-1  +  qan-2 

and 

(9) bn   =   pbn-1  +  qbn-2 

If we add the equations (8) and (9) we get 

 (an + bn)  =   p(an-1 + bn-1)  +  q(an-2 + bn-2) 

which shows that an + bn is a solution.  If we multiply equation (8) by A we 

get  

 (Aan)  =   p(Aan-1)  +  q(Aan-2) 

which shows that Aan is a solution.  If we multiply equation (8) by A and 

equation (9) by B and add we get  

 (Aan + Bbn)  =   p(Aan-1 + Bbn-1)  +  q(Aan-2 + Bbn-2) 

which shows that Aan + Bbn is a solution.  // 

It follows from the superposition principle that an = A 2
n
 + B (- 1)

n
 is a 

solution to (3) for any constants A and B.  Now we choose the constants A 

and B to satisfy the initial conditions (4).  Plugging in n = 0 we get 

 2   =   a0   =   A 2
0
  +  B  (- 1)

0
   =   A  +  B 

Plugging in n = 1 we get 

 3   =   a1   =   A 2
1
  +  B  (- 1)

1
   =   2A  -  B 

This is a system of two equations and two unknowns.  We multiply them by 



 

 

numbers to get the coefficient of one of the unknowns the same and then add 

or subtract.  In this case we can just add the equations 

  A  +  B   =   2 

 2A  -  B   =   3 

 3A          =    5        A   =   
5

3
       B   =   2 – A   =   2 - 

5

3
   =   

1

3
 

So an  =  
5

3
 2

n
 + 

1

3
 (- 1)

n
.  If we were interested in the behavior for large n 

then an = O(2
n
). 

If the roots of the characteristic equation are equal then an = nr
n
 is also a 

solution where r is a root of the characteristic equation.  Then the general 

solution is an = Ar
n
 + Bnr

n
. 

Example 2.  Consider the equation 

(10) an   =   4an-1  -  4an-2 

along with the initial conditions 

(11) a0   =   2  and  a1   =   5 

Try an   =   r
n
.  Substituting into (10) gives 

 r
n
 = 4r

n-1
 - 4r

n-2
    r

2
 = 4r – 4    r

2
 - 4r + 4 = 0    (r – 2)

2
 = 0  

   

 r1   =   r2   =   2 

So an =  2
n
 is a solution.  As indicated, when the roots of the characteristic 

equation are equal, then an = nr
n
 is a solution.  So in this case an = n2

n
 is a 

solution.  We can check this by plugging into (10).  When we do this we get 

 n2
n
   =

?
   4(n – 1)2

n-1
  -  4(n – 2)2

n-2
 

Dividing by 2
n-2

 gives 

 4n   =
?
   8(n – 1)  -  4(n – 2)    4n   =

?
   8n – 8  -  4n + 8   

which is true. 



 

 

We get the general solution by taking a superposition of an = 2
n
 and an = n2

n
.  

So an = A 2
n
 + Bn2

n
 is a solution to (10) for any constants A and B.  Now we 

choose the constants A and B to satisfy the initial conditions (4).  Plugging in 

n = 0 we get 

 2   =   a0   =   A 2
0
  +  B (0) 2

0
   =   A 

Plugging in n = 1 we get 

 5   =   a1   =   A 2
1
  +  B (1) 2

1
   =   2A  +  2B   =   (2)(2)  +  2B. 

So B = 
1

2
 and an  =  2 2

n
 + 

1

2
 n2

n
 = (n + 4)2

n-1
.  If we were interested in the 

behavior for large n then an = O(n2
n
). 

Example 3 (Fibonacci sequence).  Recall the Fibonacci sequence fn is 

defined by the recurrence relation 

(12) fn   =   fn-1  +  fn-2 

along with the initial conditions 

(13) f0   =   1  and  f1   =   1 

To solve we look for solutions of the form an = r
n
 where r determined by 

substituting int (12).  Doing this gives 

 r
n
   =   r

n-1
  +  r

n-2
 

Divide this by r
n-2

 giving 

 r
2
   =   r  +  1 

or 

 r
2
  -  r  -  1   =   0 

This doesn't look easy to factor so we use the quadratic formula.   

 r   =   
1  1 + 4

2
   =   

1  5

2
 

This equation has two solutions 



 

 

 r1   =   
1 + 5

2
      

1 + 2.24

2
   =   1.62 

 r2   =   
1 - 5

2
      

1 - 2.24

2
   =   - 0.62 

This gives the following two solutions to (3) 

 fn   =   






1 + 5

2

n

      1.62
n
    and    fn   =   







1 - 5

2

n

      (- 0.62)
n
  

By the superposition principle the general solution is 

fn   =   A 






1 + 5

2

n

 + B 






1 - 5

2

n

  

is a solution to (3) for any constants A and B.  Now we choose the constants 

A and B to satisfy the initial conditions (13).  Plugging in n = 0 we get 

 1   =   f0   =   A   +  B   

So B = 1 – A.  Plugging in n = 1 we get 

 1   =   f1   =   A 






1 + 5

2
  +  B 







1 - 5

2
 

Using B = 1 – A gives 

 1   =   5 A  +  
1 - 5

2
 

or  

 A   =   
1 + 5

2 5
   =   

5 + 5

10
      

5 + 2.24

10
   =   0.724 

 B   =   1  -  A   =   1  -  
5 + 5

10
   =   

5 - 5

10
      

5 - 2.24

10
   =   0.276 

So 



 

 

 fn   =   
5 + 5

10
 






1 + 5

2

n

 + 
5 - 5

10
 






1 - 5

2

n

      0.724 (1.62)
n
  +  

0.276 (- 0.62)
n
 

Note that (- 0.62)
n
  0 as n  , so fn  0.724 (1.62)

n
 for large n.  In 

particular, fn = O








 






1 + 5

2

 n

 . 

Can we make the formula fn  0.724 (1.62)
n
 a little easier to interpret?  Let's 

write 1.62 = 10
log10(1.62)

.  One has log10(1.62)  0.2 = 1/5, so 1.62  10
1/5

 and 

fn  0.724  10
n/5

.  One way to look at this is that each time n increases by 5 

the value of fn is multiplied by 10, i.e. one adds another digit to fn.  For 

example, f25  0.725  10
25/5

 = 72,500 while f30  0.725  10
30/5

 = 725,000.  

The actual values are f25 = 75,025 and f30 = 832,040. 

One reason the Fibonacci numbers are important is because they are the 

worst case for the Euclidean algorithm.  More precisely, suppose you use the 

Euclidean algorithm to find the greatest common divisor of m = fn and p = 

fn+1.  Then when you divide m = fn into p = fn+1 you get a quotient of 1 and a 

remainder of fn-1, since fn+1 = fn + fn-1.  Then when you repeat the process 

with fn-1 and fn you get a quotient of 1 and a remainder of fn-2, so the next pair 

is fn-2 and fn-1.  This continues until you reach f1 = 1 and f2 = 2 where you 

stop since the remainder is 0.  So, altogether, you had to n divisions.  

Example 4.  Let Sn be the number of n bit strings that don't contain two 

consecutive 1's.  Find a formula for Sn. 

 

We discussed this in section 5.1 where we saw that Sn satisfied the 

recurrence relation and initial conditions 

 Sn   =   



Sn-1 + Sn-2                   if n  3

2                               if n = 1

3                               if n = 2
 

 

This is the same recurrence relation as the Fibonacci sequence fn except the 

initial conditions are different.  In fact S1 = f2 and S2 = f3.  It follows that Sn = 

fn+1 for all n.  So 

 

 Sn   =   
5 + 5

10
 






1 + 5

2

n+1

 + 
5 - 5

10
 






1 - 5

2

n+1

    



 

 

=   
5 + 3 5

10
 






1 + 5

2

n

 + 
5 - 3 5

10
 






1 - 5

2

n

  

   1.17 (1.62)
n
  -  0.17 (- 0.62)

n
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

UNIT-5 

GRAPH THEROY 

TERMINOLOGY AND BASIC GRAPH THEORY 

 

Introduction 

This chapter presents an overview of basic graph theory, including its 

association with set theory.  Graphs can be shown to be quite useful, 

especially as a mathematical tool for studying network problems.  We shall 

begin our study with graph theory as applied to static problems in network 

theory, which are those problems that are related to the structure of the 

network.  Static problems include the assessment of the impact of the loss of 

one or more communicating nodes or one or more communication links.  We 

use graph theory in an attempt to create networks that are less vulnerable to 

such loss. 

 

In another chapter of these notes, we shall consider the application of graph 

theory to dynamic problems, such as dynamic load balancing.  We shall 

show that certain algorithms become unstable under dynamic conditions, in 

that they present alternating optimal solutions: try this, no try that, etc.  This 

observation should serve as a caution not to trust results from static graph 

theory to work in all dynamic problem areas. 

 

But first we must get started with the basic graph theory.  We begin with the 

definition of sets and develop the idea of a graph as a set of vertices and a set 

of edges. 

 

Terminology and notations used 

A graph G is a finite non-empty set of objects called vertices together with 

a (possibly empty) finite set of unordered pairs of distinct vertices of G 

called edges.  The vertex set of G is commonly denoted by V(G), and the 

edge set commonly denoted by E(G).  The cardinality of the vertex set of a 

graph G is called the order of G, and the cardinality of the edge set is called 

the size of G.  An (n, m)-graph G is a graph with n vertices and  

m edges; |V(G)| = n and |E(G)| = m.  Although graphs are formally defined 

in terms of sets, they are commonly depicted by figures in which the nodes 



 

 

are depicted as circles (or ellipses) and the edges as lines between the 

circles. 

 

The formal definition of a graph is based on set theory and utilizes the 

Cartesian product of sets, for which we present the standard definition.  We 

begin by recalling that a set is an unordered collection of elements.  For a set 

A, we write a  A if element a is an member of set A and a  A if it is not.  

We sometimes define sets by a complete listing of the members of the set 

and sometimes by a description of the form {x | p(x)}, to be read as the set of 

all x such that p(x) is true.  Although it would be a bit strange, one can define 

the set of all odd integers as { x | (x is an integer) and (x is an odd number) }. 

 

Let A and B be two arbitrary sets, defined over the same type of elements.  

We say that A is a subset of B, denoted as A  B, if every element that is in 

A is also in B; more formally: A  B if and only if a  A implies a  B.  

Two sets A and B are equal if and only if both A  B and B  A.  We say 

that A is a proper subset of B, denoted A  B, if A  B, but A  B. 

 



 

 

Definition: For any two sets A and B, the Cartesian product of A and B, denoted 

by A  B, is the set of pairs of elements defined by A  B = { (a, b) | a  A, b  

B}; thus it is the set of pairs of elements (a, b) for which the first element is a 

member of set A and the second element is a member of set B. 

 

As we shall soon see, one may take the Cartesian product of a set with itself.  Thus 

we have  

A  A = { (a1, a2) | a1  A, a2  A}.  This work will use the Cartesian product sets 

for which the elements of the pair are distinct and unordered; thus a1  a2  and (a1, 

a2) is considered the same element as (a2, a1).  For example, consider A = {1, 2, 3, 

4},  The set A  A has 16 elements; our work focuses on a subset of A  A, E  A 

 A, that can be listed as  

 E = { (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) }. 

 

Let X be an arbitrary set with a finite number of elements.  The cardinality of X, 

denoted by |X|, is the number of elements in the set.  If |X| = 0, the set is said to be 

the empty set, denoted by .  If |X| > 0, the set is said to be non-empty.  We now 

define the basic set operations.  For two sets A and B: 

  the set intersection, denoted A  B, is A  B = { x | x  A and x  B}, 

  the set union, denoted A  B, is A  B = { x | x  A or x  B}, and 

  the set difference, denoted A – B, is A – B = { x | x  A and x  B}, and 

  the set symmetric difference, denoted A  B, is A  B = (A  B) – (A 

 B); 

   that is, the set of elements either in set A or in set B, but not in both 

sets. 

 

 As an example, consider the following two sets, each a subset of the 

integers. 

  A = {2, 4, 6, 8, 10, 12, 14, 16, 18} 

  B = {3, 6, 9, 12, 15, 18} 

 Then A  B = {6, 12, 18} 

  A  B = {2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18} 

  A – B = {2, 4, 8, 10, 14, 16} 

  A  B = {2, 3, 4, 8, 9, 10, 14, 15, 16}. 

 

These set operations are often illustrated using Venn diagrams, as shown below. 



 

 

 
Figure 1: Venn Diagrams for Common Set Operations 



 

 

Set Elements and Singleton Sets 

At this point, it is important to make the distinction between elements of sets and 

the sets themselves.  A set element can never be equal to a set.  A singleton set is a 

set with one element.  Singleton sets, unlike the empty set , generally have no 

special significance in set theory and are mentioned only to clarify the notations 

used in the theory. 

 

Consider the following set: F = {0, 1, 2, 3}, the set of integers modulo 4.  The 

number 1 is an element of that set, so we can write 1  F.  Note that the element 1 

is distinct from {1}, which is the set consisting of the single element 1.  The 

following are true statements. 

 

 1  F  the element 1 is a member of the set F. 

 1  {1} the element 1 is a member of this set also. 

 {1}  F the set {1} is a proper subset of the set F. 

 {1}  F the set {1} is a subset of the set F. 

   F  the empty set is a subset of every set.  In order to falsify this 

claim, one 

   would have to show an element x  , such that x  F.  But the 

empty 

   set has no members, so one cannot find such an element. 

 

Note that we normally write subset inclusion as X  Y, unless it is important to 

state that X is a proper subset of set Y.  We say X  Y if either X  Y or X = Y is 

an acceptable condition. 

 

The following statements are not correct and in many cases violate the conventions 

of set theory. 

 

 1  F  an element cannot be a subset of any set.  Elements are 

members of sets. 

 1 = {1} an element can never be equal to a set; the two are different 

object types. 

 {1}  F F is a set of elements, so another set cannot be a member of F. 

 {1} = F Obviously we have {1}  F, but F  {1} is shown to be false 

by noting 

   that 2  F, but 2  {1}. 

 

Sets of Sets 

Just so the student knows it can be done, we can define a set containing other sets 

as members.  Thus we can define G = { {0}, {1}, {2}, {3} }.  Note that G is not 



 

 

equal to F, as F has four integers as members and G has four singleton sets as 

members.  In this case, we can properly write that {1}  G, as the set G contains 

the element {1}. 

 

Power Sets 

We shall normally avoid sets that contain other sets as members.  There is one 

important set of sets that we should discuss – the power set.  We define the term 

and give an example. 

 

For a given set X, the power set of X, denoted P(X), is the set of all subsets of X. 

 

If A = {0, 1, 2, 3}, as above, then 

 P(A) = {  , {0}, {1}, {2}, {3}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, 

  {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4} } 

 

It can be proven that if |X| = K, then |P(X)| = 2
K
; here |A| = 4 and |P(A)| = 16 = 2

4
. 



 

 

We now restate the definition of a graph, using the more precise terminology. 

Definition: A graph G is a finite non-empty set of vertices, denoted V(G), together 

with a (possibly empty) finite set E  V(G)  V(G) of unordered pairs.  As before, 

we let |V(G)| = n  

and |E(G)| = m and speak of an (n, m)-graph, usually called G. 

 

The definition above is a bit too general for use in association with graph theory, 

so we immediately restrict it a bit.  We introduce the idea of simple graphs, which 

is the type of graphs normally implied by the term “graph”.  A simple graph is a 

graph without edges connecting any vertex to itself.  The graph in the next figure is 

not simple, as it has edges connecting vertex 1 to itself and vertex 4 to itself. 

  

 The graph at right is also described as follows 

 V(G) = {1, 2, 3, 4} 

 E(G) = { (1, 1), (1, 4), (2, 3), (2, 4), (4, 4) } 

 

Figure 2: Two Representations of a Not-Simple Graph 

 

We shall restrict our study of graphs to simple graphs.  While graphs with loops 

are valuable in a number of studies, they are not useful in the analysis of networks 

and do present a number of difficulties that we would like to avoid.  So – only 

simple graphs. 

 

For a set of n objects, there are n(n – 1) ordered pairs of distinct elements; that is 

pairs (i, j), with i  j, in which the element (i, j) is different from the element (j, i).  

For a set of n objects, there are 
 n n n

2

1

2








 

 
 unordered pairs of distinct objects, 

in which the element (i, j) is considered to be the same as the element (j, i).  We 

have two options, depending on whether the edge set contains ordered or 

unordered pairs. 

 Directed graphs correspond to edge sets that contain ordered pairs. 

 Undirected graphs correspond to edge sets that contain unordered pairs. 

 

 Consider the figure below, which shows an undirected graph and a directed 

graph. 



 

 

 
Figure 3: Two Sample Graphs On the Same Vertex Set 

 

Each of the graphs in the figure has the vertex set V = {1, 2, 3, 4}.  The edge set of 

the directed graph is E = { (1, 4), (2, 4), (3, 2), (4, 1), (4, 3)}.  The edge set of the 

undirected graph is  

E = { (1, 4), (2, 3), (2, 4), (3, 4) }.  Note that in the undirected graph, the following 

edges are implicitly listed: (3, 2), (4, 1), (4, 2), (4, 3), as the pairs representing the 

edges are unordered.  Thus, the pairs (1, 4) and (4, 1) are considered equivalent in 

an undirected graph and each represents the same edge.  In a directed graph each of 

the ordered pairs (1, 4) and (4, 1) represents a distinct edge. 



 

 

The student should note that it is always possible to create a directed graph that is 

equivalent to an undirected graph; one need only “double up” each edge in the 

undirected graph.  The following figure shows an undirected graph and its 

equivalent directed graph. 

 
Figure 4: An Undirected Graph and the Equivalent Directed Graph 

 

For the moment we shall restrict our discussions to undirected simple graphs, 

which we shall call “graphs” with no further distinction.  As noted above, the edge 

set for an undirected graph with vertex set given by V(G) = {1, 2, …, n}.  E(G) is a 

subset of V(G)  V(G) that contains only unordered pairs of distinct elements.  For 

a set of n objects, there are 
 n n n

2

1

2








 

 
 unordered pairs of distinct objects, this 

is the maximum size of the edge set for an (n, m)-graph.  Thus we have the 

following limits on the number of edges in a simple undirected graph G. 

Proposition 1: Let G be a simple undirected graph, with |V(G)| = n. 

  Then 0  |E(G)|  
 n n n
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 
. 

 

The complement of a graph G, denoted GC, is the graph with the vertex set V(G) 

and edge set defined by E(GC) = { (u, v) | u  V(G), v  V(G), (u, v)  E(G) }.  If 

G is an (n, m)-graph, then GC is an (n, n(n – 1)/2 – m)-graph. 

 

In much of graph theory, the vertices of the graphs are labeled by integers, so that a 

four-vertex graph would have V(G) = {1, 2, 3, 4}.  The set of possible edges for 

such a graph would be  

{ (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) }.  Consider two (4, 3)-graphs, a graph 

and its complement.  First we give a rather formal definition of the two graphs. 

  G = (V(G), E(G) | V(G) = {1, 2, 3, 4}, E(G) = {(1, 2), (1, 3), (1, 4)} 

  GC = (V(G), E(G) | V(G) = {1, 2, 3, 4}, E(G) = {(2, 3), (2, 4), (3, 4)} 

 

While this is a sufficient definition of the two graphs, most people prefer the visual 

representation of the graphs.  Here are standard representations of G and GC. 



 

 

 
Figure 5: A Graph and Its Complement 



 

 

Two graphs often have the same structure, differing only in the way their vertices 

and edges are labeled or in the way they are drawn.  To make this idea more exact 

and to develop a way to focus on the essential structure of graphs, we introduce the 

concept of  graph isomorphism.  Two graphs G1 and G2 are said to be 

isomorphic, denoted by G1  G2, if there exists a one-to-one mapping  from 

V(G1) onto V(G2) such that the mapping preserves the adjacency, that is to say that 

(u, v)  E(G1) if and only if ((u), (v))  E(G2).  Were we to push a point, we 

would note that graph isomorphism forms equivalence classes on graphs: if G1  

G2 and G2  G3, then G1  G3.  The next figure shows two graphs that are labeled 

and drawn differently, but are isomorphic. 

 

 

 

 

 

Figure 6: Two Isomorphic Graphs 

 

The two graphs in Figure 6 are isomorphic under the following transformation: 

(1) = A, (2) = B, (3) = C, and (4) = D.  The edge lists of the two graphs 

show this. 

  Graph on left:  (1, 2), (1, 4), (2, 3), and (3, 4) 

  Graph on right: (A, B), (A, D), (B, C), and (C, D). 

If we take the graph on left and apply the transformation to its vertex labels, we 

arrive at the edge list (A, B), (A, D), (B, C), and (C, D).  This is precisely the edge 

list of the graph on the right, as expected.  Thus, the two graphs are isomorphic. 

 

The basic use of the idea of graph isomorphism is that we can view isomorphic 

graphs as identical and ask questions only about graphs that are not isomorphic.  

We use isomorphism to define a method of classifying graphs.  For integers n > 0 

and m  0, let (n) denote the collection of all non-isomorphic graphs with n 

vertices and (n, m) denote the collection of all non-isomorphic graphs on n 

vertices and m edges.  The next figure shows the sets (n) for  

1  n  4.  Note that the set (1) has only one member – a single graph with one 

vertex and no edges incident on it; an isolated vertex. 

 



 

 

 
Figure 7: The sets (1), (2), and (3) 

 

 
Figure 8: The Eleven Members of (4) 

 

Notation:  At this point, we make a change in the way we refer to vertices.  In our 

previous discussions, we used the “pure mathematics” approach to describing 

graphs, in which vertices were denoted by an integer in the range 1 to |V(G)| 



 

 

inclusive and edges were denoted by unordered pairs of integers.  In our studies, 

we normally use different labels for graphs, normally labeling the vertices as v1, v2, 

…., vn for a graph with n vertices.  When discussing a few vertices, we might give 

them labels, such as u, v, and w.  Similarly, in discussing edges, we might use 

notation such as (u, v) or (vi, vj).  The student should note that there is no 

theoretical significance to this; it is just one of many conventional notations used in 

describing graphs. 

 

An edge (u, v) is said to join the vertices u and v.  If (u, v)  E(G), then vertices u 

and v are said to be adjacent; u is adjacent to v, and v is adjacent to u.  The edge 

(u, v) is said to be incident on its end vertices u and v.  Again, in simple graphs we 

assume u  v. 

 

The degree of a vertex v in G, denoted either as dv or d(v), is the number of edges 

incident on the vertex v.  Since each edge incident on the vertex v causes another 

vertex to be adjacent to v, we might say that the degree of the vertex is the number 

of vertices adjacent to it.  The two definitions are entirely equivalent.  

Occasionally, when a vertex is a part of two or more different graphs, we use the 

full notation dG(v) to indicate the degree of a vertex v in the graph G.  Normally 

such precision is not required. 

 
Figure 9: Illustration of Vertex Degrees 

 

In this figure, d1 = d(v1) = 2, d2 = d(v2) = 4, d3 = d(v3) = 3, d4 = d(v4) = 2, and 

d5 = d(v5) = 3.  Note that 


n

j
jd

1

= 2 + 4 + 3 + 2 + 3 = 14 = 2m.  This is not a 

coincidence. 

A vertex of zero degree is called an isolated vertex in that it has no edges incident 

on it and thus is not adjacent to any other vertex.  At this point it will be convenient 

to state a few lemmas and theorems related to vertex degree. 

 

Lemma 2: Let G be an (n, m)-graph and let v  V(G).  Then 0  d(v)  (n – 1). 

Proof: The assertion that d(v)  0 comes from the fact that d(v) is a counting 



 

 

number. 

If v  V(G), there are only (n – 1) other vertices in V(G) to which v may be 

adjacent, thus it follows that d(v)  (n – 1). 

 

Theorem 3: Let G be an (n, m)-graph with V(G) = {v1, v2, …., vn}.  Let the degree 

of vertex vj be given by dj = d(vj).  Then 


n

j
jd

1

= 2m. 

Proof: Every edge in G is incident on two vertices; hence, when the degrees 

of the vertices are summed, each edge is counted twice.  This completes the proof. 

 

Theorem 4: Let G be an (n, m)-graph, with m  n.  Then G has at least two vertices 

of degree d(v)  2. 

Proof: Assume that G has only one vertex with degree d(v)  2.  By Lemma 2, we 

have  

d(v)  (n – 1), so we let the one vertex of degree greater than 1 have degree (n – 1).  

The maximum value of 


n

j
jd

1

 is then 1(n – 1) + (n – 1)1 = 2(n – 1), being 

generated by the one vertex of degree (n – 1) and the (n – 1) vertices of degree 1.  

As a result of theorem 3, we have  

m  (n – 1), which contradicts the assumption that m  n. 

 

A graph G is called regular if all of its vertices have the same degree and is called 

pseudoregular if the degrees of its vertices differ by at most one.  For a vertex v, 

define N(v), the open neighborhood of v, as the set of vertices adjacent to v.  As 

each edge incident on a vertex v connects it to an adjacent vertex, it follows 

immediately that |N(v)| = d(v).  The closed neighborhood of a vertex, denoted 

N[v], adds the vertex itself to its open neighborhood; N[v] = N(v)  {v}.  Note that 

{v} is the set containing only one element – the vertex v. 

 

A regular graph in which all vertices have degree k is called k-regular.  The 3-

regular graphs are called cubic and have been studied extensively. 

 



 

 

 
Figure 10: A 2-regular and a 3-regular graph 

 

Note that in the above figure, that the 3-regular graph has been drawn so that its 

vertices appear at the corner of a cube.  This is one of the reasons for the name 

“cubic”.  The next topic to be discusses considers the number of vertices that are 

adjacent to each of two distinct vertices. 

 

Let u and v be two distinct vertices in (n, m)-graph G.  The codegree of the two 

vertices, denoted by codeg(u, v), is the number of vertices adjacent to both u and v.  

In set notation, we can write codeg(u, v) = |N(u)  N(v)|.  We now give an upper 

limit on the codegree of two vertices. 

 

Lemma 5: Let u and v be two distinct vertices in (n, m)-graph G. 

  Then 0  codeg(u, v)  (n – 2). 

Proof:  The assertion that codeg(u, v)  0 comes from the observation that it is a 

counting number.  The upper limit comes from the observation that there are only 

(n – 2) other vertices in G, so that |N(u)  N(v)|  (n – 2). 

 

We now place a lower limit on the codegree of two adjacent vertices. 

Lemma 6: Let x and y be two adjacent vertices in an (n, m)-graph G.  Then 

  d(x) + d(y)  Codeg(x, y) + n. 

 



 

 

 
Figure 11: The Degrees and Codegree of Two Adjacent Vertices 



 

 

Proof:  Consider the two adjacent vertices x and y in the above diagram.  Other 

than vertex y, there are d(x) – 1 vertices adjacent to vertex x, of which d(x) – 

Codeg(x, y) – 1 are adjacent to vertex x but not vertex y and Codeg(x, y) are 

adjacent to both x and y.  The number of vertices (other than x or y) that are 

adjacent to either vertex x or vertex y or both is given by 

d(x) – Codeg(x, y) – 1 + Codeg(x, y) + d(y) – Codeg(x, y) – 1 = d(x) + d(y) – 

Codeg(x, y) – 2.  But other than vertices x and y there are only (n – 2) other vertices 

in the graph G, so we have 

d(x) + d(y) – Codeg(x, y) – 2  (n – 2) or d(x) + d(y)  Codeg(x, y) + n. 

 

A subgraph of a graph G us a graph having all of its nodes and edges in G.  Thus, 

H is a subgraph of G if and only if V(H)  V(G) and E(H)  E(G).  A subgraph of 

G is a spanning subgraph if it contains all of the nodes of G.  Thus H is a 

spanning subgraph of G if V(H) = V(G) and E(H)  E(G).  For any sets U of nodes 

in G, U  V(G), the induced subgraph <U> is the maximal subgraph with vertex 

set U.  Put another way, the induced subgraph <U> is the graph with vertex set U 

 V(G), with any two vertices being adjacent in <U> if and only if they are 

adjacent in G.  We say more on induced subgraphs later in this chapter. 

 

Let u and v be vertices in a graph G, with u and v not necessarily distinct.  A u-v 

walk of G is a finite, alternating sequence of vertices and edges starting with u and 

ending with v: thought of as u = u0, e1, u1, e2, …., us-1, es, us = v, such that ei = (ui-1, 

ui).  The number s, the number of edges in the sequence, is called the length of the 

walk.  A u-v path is a u-v walk in which no vertex is repeated.  A cycle is a u-v 

walk in which all vertices are distinct with the sole exception that  

u = v.  Paths and cycles, as special cases of walks, have obvious definitions for 

their lengths.  A graph G is said to be connected if there exists a path between 

every pair of distinct vertices in the graph, otherwise it is disconnected.  For a 

connected graph G, we define the distance d(u, v) as the minimum of the lengths 

of all u-v paths connecting the 2 vertices u and v.  A path of minimum length 

between two vertices is sometimes called a geodesic. 

 

A connected component, or simply a component, of a graph G is a maximal 

connected subgraph of G.  If a graph is connected, it has only one component; 

otherwise it has two or more components.  For any vertex v  V(G), the 

component containing v is formed by adding v to the set of all vertices reachable 

by a path from v. 

 

The following figure shows a graph with three components. 



 

 

 
Figure 12: A Disconnected Graph With Three Components 

 

The three components of the graph in this example are {1, 2, 3, 4}, {5, 6, 8}, and 

{7}.  Note that there is a path from vertex 1 to vertex 3, so the two vertices are in 

the same component of the graph.  Since there is no path from vertex 1 to vertex 5, 

they are in different components. 

 

Recalling that a cycle is a path through a graph beginning and ending on the same 

vertex, we give the following definition of a graph without cycles. 

Definition: An acyclic graph is a graph that does not contain a cycle. 



 

 

Definition: A tree is a connected acyclic graph. 

 

Definition: A rooted tree is a tree in which one vertex has been distinguished and 

called the 

  root.  Most trees of interest in computer science are rooted trees. 

 

Trees play only a small part in the analysis of networks.  The one tree of greatest 

importance for networks is the star graph, also called K1,n-1 (see below).  The next 

figure shows two of the smaller star graphs K1,2 (also called a P3, see below) and 

K1, 4.  Note that we, as computer science people, see each tree as a rooted tree with 

the root vertex (or root node) being vertex 1. 

 
Figure 13: Two Star Graphs 

 

Recalling that a subgraph H of graph G is a spanning subgraph if V(H) = V(G) and 

E(H)  E(G).  If H is a spanning subgraph of G and H happens to be a tree, then H 

is said to be a spanning tree of the graph G. 

 

Upon reflection, one should realize that a graph G may have many distinct 

spanning trees; indeed it is almost obvious that a graph G has a unique spanning 

tree if and only if G is itself a tree.  The next figure shows a graph and its three 

spanning trees. 

 

 
Figure 14: A Graph G and Its Spanning Trees 

 

In the example above, we see a (4, 4)-graph G (4 vertices and 4 edges) and its 3 

spanning trees T1, T2, and T3.  As we shall prove soon, a tree on four vertices must 

have exactly three edges.  In the above example there are three edges that can be 

removed to yield a tree; removal of edge (1, 4) will cause the graph to be 

disconnected.  Note that each of T1 and T3 is isomorphic to the graph P4 – a path on 



 

 

four vertices, while T2 is isomorphic to K1,3 – the star graph on 4 vertices. 

 

We will soon quote one of the basic theorems regarding trees, but need to begin 

with a definition and a simple lemma.  The definition serves to eliminate trivial 

exceptions from our theorems on trees. 

 

Definition: A nontrivial tree is a tree with at least two vertices. 



 

 

Lemma 7:  Every nontrivial tree has at least two vertices of degree 1. 

Proof: Let P be a longest path in a nontrivial tree T and let u and v be the end-

nodes of the path P.  Since T is acyclic, u and v each have only one neighbor in P, 

and since P is a longest path each has no neighbors in T – P (else the path could be 

extended).  Thus there must be at least two vertices of degree one in a nontrivial 

tree. 

 

Before we quote the “big theorem” we must explain a new bit of terminology.  Let 

G be an  

(n, m)-graph on at least two vertices, and let u and v be vertices that are not 

adjacent in G.  Then by G + (u, v) we denote the (n, m + 1)-graph formed from G 

by adding making the two vertices u and v to be adjacent by adding the edge (u, v).  

Another term often used is G + e, denoting the addition of a new edge to a graph 

G. 

 

Theorem 8:  The following statements are equivalent. 

 1. G is a tree with n vertices and m edges. 

 2. Every two distinct vertices of G are connected by a unique path. 

 3. G is connected and m = n – 1. 

 4. G is acyclic and m = n – 1. 

 5. G is acyclic and if any two nonadjacent vertices of G are joined by an edge 

  e, then G + e, the graph with one edge added, has exactly one cycle. 

 

Proof: This is a well-known result.  The theorem as stated is a slight rewording of 

Theorem 1.2 in reference [R01].  We shall adapt the proof from that reference and 

show the proof as an example of how graph theorists think.  If the statements are 

all equivalent, then they must either be all true or all false for a given graph.  The 

strategy for a proof of equivalence is quite simple; we just prove that any one 

statement implies all of the other statements.  In this case we shall show a circular 

equivalence; thus 1  2, 2  3, 3  4, 4  5, and 5  1. 

 

Proof that 1  2 

Since G is a tree, it is a connected graph without cycles.  Since G is connected, 

every two distinct nodes in G are connected by a path.  Suppose two distinct nodes 

u and v in G that are connected by two distinct paths P and P*.  Let w be the first 

node of path P (as we traverse from u to v) such that w is on both P and P*, but its 

successor on P is not on P*.  Note that w = v is allowed in this proof.  We then 

follow path P from u to w and path P* backwards from w to u to form a cycle.  

Thus the assumption of two distinct paths between any two vertices implies that 

the graph contains cycles and cannot be a tree. 

 



 

 

Proof that 2  3 

If every distinct pair of nodes in G is connected by a unique path, then G is 

connected by definition.  We prove that n = m + 1 by induction.  Reference to 

figures 7 and 8 of this work will show that the statement is true for n = 2, 3, and 4.  

It is also vacuously true for n = 1.  Now assume that the result is true for all graphs 

with fewer than n vertices. 

 

Suppose that G is a graph with n nodes (n  2), m edges, and let v be one of the 

nodes of degree one in G (see Lemma 6).  Then G – v, the graph obtained by 

removing the vertex v and the edge incident on it from G, has (n – 1) vertices, one 

less than G, and still satisfies property 2.  By the inductive hypothesis G – v has m 

= (n – 1) – 1, thus the number of edges in G is m = (n – 1). 



 

 

Proof that 3  4 

Assume that G has a cycle of length p.  Then there are p vertices and p edges on 

the cycle, and for each of the (n – p) vertices not on the cycle there is an incident 

edge on a geodesic from that vertex to a vertex in the cycle.  Each such edge is 

different, so (n – p) + p = n  m, which is a contradiction. 

 

Proof that 4  5 

Since G is acyclic, each component of G is a tree.  If there are k components, then 

each component has one more vertex than edge and n = m + k, so the assumption 

that  

n = m + 1 implies that k = 1 and that G is connected.  Thus G is a tree and there is 

exactly one path connecting any two nodes in G.  If we add an edge (u, v) to G, 

that edge together with the unique path in G joining u and v forms a cycle.  The 

cycle is unique because the path is unique. 

 

Proof that 5  1 

For this proof, we need a new notation.  Let u and v be two non-adjacent vertices in 

a graph G.  The graph G + (u, v) is the graph created by adding the edge (u, v) to 

G.  If G is an (n, m)-graph, then G + (u, v) is an (n, m + 1)-graph.  In general, we 

use the notation  

G + e to indicate the graph generated from G by adding some new edge to G. 

 

The graph G must be connected, for otherwise an edge e could be added joining 

two nodes in different components, and the graph G + e would be acyclic.  Thus G 

is connected and acyclic, thus G is a tree. 

 

We use the above theorem on trees to derive a result of importance to this work. 

Lemma 9: Let G be an (n, m)-graph with m < (n – 1).  Then G is disconnected. 

Proof: Let G be an (n, m)-graph with m = (n – k), with k  2.  If G is 

connected, then there is a path between any two distinct vertices u, v  V(G).  

Select u and v as non-adjacent vertices and add the edge e = (u, v).  We now have 

an (n, (n – k + 1))-graph that contains a cycle, beginning at u, going to v, and 

returning to u by the existing path.  If k > 2, repeat the above step (k – 2) times, 

noting only that the addition of new edges does not remove the first cycle created.  

We then have an (n, (n – 1))-graph that is connected but contains a cycle.  This 

contradicts Theorem 8 and thus we conclude that the original graph G could not 

have been a connected graph.  The interested reader will find another proof of this 

lemma in the discussion of Theorem 1.3.1 in [R02].  It is important to note that m < 

(n – 1) does not require that the graph have isolated vertices.  The reader should 

examine the two (4, 2)-graphs shown in Figure 8, only one of which has an isolated 

vertex.  A graph with an isolated vertex must be disconnected, but there are very 



 

 

many disconnected graphs that have no isolated vertices. 

 

For a connected graph G, we define e(v), the eccentricity of vertex v, as the 

maximum of the distances from v to the other vertices in the graph.  The radius of 

a connected graph G, denoted rad(G), is the minimum value of the eccentricity of 

its vertices, while the diameter of the graph, denoted diam(G), is the maximum 

value of the eccentricity of its vertices.  Before we quote a familiar theorem 

relating the radius and diameter of a graph, we give an example. 

 

 
Figure 15: A Graph with Radius 3 and Diameter 5 

 

In order to compute the radius and diameter of the graph, we first compute the 

eccentricity of each vertex.  We construct the distance matrix for the graph. 

 

Vertex d(v, 

1) 

d(v, 

2) 

d(v, 

3) 

d(v, 

4) 

d(v, 

5) 

d(v, 

6) 

d(v, 

7) 

d(v, 

8) 

d(v, 

9) 
e(v) 

1 0 1 1 2 2 3 4 4 5 5 

2 1 0 2 1 1 2 3 3 4 4 

3 1 2 0 2 1 2 3 3 4 4 

4 2 1 2 0 1 1 2 2 3 3 

5 2 1 1 1 0 1 2 2 3 3 

6 3 2 2 1 1 0 1 1 2 3 

7 4 3 3 2 2 1 0 1 1 4 

8 4 3 3 2 2 1 1 0 1 4 

9 5 4 4 3 3 2 1 1 0 5 

 

Note that the maximum of the vertex eccentricities is 5; this is the diameter of the 

graph.  The minimum of the vertex eccentricities is 3; this is the radius of the 

graph.  A central vertex is a vertex with eccentricity equal to the radius of the 

graph.  The center of a graph, denoted Z(G), is the set of all central vertices; here 

Z(G) = {4, 5, 6}.  Since the radius of the graph is defined to be the minimum of the 

eccentricities of the vertices, it should be obvious that there is at least one vertex of 



 

 

minimum eccentricity, and thus the center Z(G) has at least one element. 

 

Theorem 10: For every connected graph G, rad(G)  diam(G)  2  rad(G). 

Proof:  The inequality rad(G)  diam(G) arises from the definition that the radius 

is the minimum of a set of numbers while the diameter is the maximum of the 

same set of numbers.  In order to verify the second inequality, select vertices u and 

v in G such that d(u, v) = diam(G).  Let w be any vertex in Z(G), the center of G.  

Then d(u, w)  e(w) and d(v, w)  e(w), where  

e(w) = rad(G).  It can be shown that d(u, v)  d(u, w) + d(w, v) for any three 

vertices u, v, and w, so we have d(u, v)  d(u, w) + d(w, v) = 2  e(w) = 2  rad(G). 

 

An (n, m)-graph G is called k-partite, 1 < k  n, if the vertices of G can be 

partitioned into k vertex sets V1, V2, ... , Vk such that no two vertices in the same 

set are connected by an edge in G.  The vertex sets are called parts of V(G).  For k 

= 2, we have a 2-partite graph, more commonly called a bipartite graph.  A 3-

partite graph is also called a tripartite graph. 

 

 
Figure 16: Some Bipartite Graphs and a Tripartite Graph 

 

Fig 16a is K2, 3.  Both fig 16b and 16c are K3,4 – fig 16c is just drawn funny.  Note 

that the vertices on the left and right side in fig 16c are not adjacent.  Fig 16d is not 

a complete graph. 

 

Before continuing, we note that any tree is also a bipartite graph.  We show this 

fact by constructing the two vertex parts of the graph.  Let T be a tree on n vertices 

and hence (n – 1) edges.  Select one vertex, call it u, and place it in the vertex part 

called V1.  Place every vertex at distance 1 from u into vertex part V2, every vertex 

distance 2 from u into vertex part V1, and in general every vertex at odd distance 

from u into V2 and at even distance from u into V1.  Since Theorem 8 assures us 

that the path from any vertex to u is unique, we do not try to place any vertex into 



 

 

both V1 and V2.  We now show that no two vertices in a vertex part can be 

adjacent.  Suppose that v and w are two vertices in a vertex part that are adjacent.  

We have paths from u to both v and w, thus creating the cycle from the path from u 

to w, the edge (w, v) and the path from v to u.  But the tree T is acyclic, so that 

vertices in the same vertex part cannot be adjacent and T is bipartite.  In a rooted 

tree, think of one vertex part as all vertices at an odd distance from the root vertex 

and the other vertex part as the rest of the vertices. 

 

A graph G is called complete if every pair of its vertices is connected by an edge.  

By Kn we denote a complete graph on n vertices.  Cn denotes the cycle on n 

vertices, and Pn denotes the path on n vertices. Note that for n  2, Kn has n(n – 

1)/2 edges, Cn has n edges and Pn has  

(n – 1) edges.  K3, which is isomorphic to C3, is called the triangle graph, or 

triangle.  K1 denotes the empty graph on one vertex, it is a graph with one isolated 

vertex and no edges. 

 

G is called a complete k-partite graph if it is k-partite and whenever two vertices 

are in different parts of the graph they are connected by an edge in E(G).  A 

complete 2-partite graph is called complete bipartite and is denoted by Ka,b, 

where the number of vertices in the two vertex parts is a and b respectively.  K1,n-1 

denotes a star graph on n vertices with (n – 1) edges.  K1,n-1 is a complete bipartite 

graph; it is also a tree.  Note that K1,2 is isomorphic to P3.  Note that there is only 

one connected graph on two vertices; it can be called either K1,1 or K2 or P2, but not 

C2 as a cycle must have at least three vertices. 

 

For an arbitrary graph G, nG denotes n copies of the graph G.  Let nK1 denote the 

empty graph on n vertices.  Then we have m(nK1) = 0; nK1  (n,0).  The 

maximum number of edges in a graph in (n) equals m(Kn) = n(n – 1)/2. 



 

 

There are many ways to combine graphs to produce new graphs.  We shall 

consider only one binary operator – the union.   This is defined as follows. 

Definition:  The union of two graphs G1 and G2, denoted G = G1  G2, is that 

graph with  

V(G) = V(G1)  V(G2) and E(G) = E(G1)  E(G2). 

 

Note that one can use this union operator as an alternate definition of the graph nG, 

based on a recursive definition: 2G = G  G, and nG = (n – 1)G  G.  One 

important graph for our consideration will be G = K1,n-j  (j – 1)K1.  For n = 6 and 

j = 3, we have the graph in the following figure.  The graph has two isolated 

vertices. 

 

 
Figure 17: The (6, 3)-Graph K1,3  2K1. 

 

The vertex connectivity or simply connectivity of a connected graph G, denoted 

(G) is the minimum number of vertices the removal of which from G yields either 

an isolated vertex or a disconnected graph.  If (G)  r, then the graph G is said to 

be r-connected.  The edge connectivity of a graph G, denoted (G) is the 

minimum number of edges the removal of which results in a disconnected graph. 

 

Let G be an (n, m)-graph with vertices v1, v2, ... , vn having degrees d1, d2, ... dn, 

where  

di = d(vi).  We label the vertices so that d1  d2  …  dn to get a sequence called 

the degree sequence of G, denoted by D(G) = (d1, d2, ... , dn).  By (G) we denote 

the maximum degree in G, and by (G) we denote the minimum degree in G.  If 

the degree sequence D(G) is presented in the as above, then (G) = d1 and (G) = 

dn.  By DSS(G) we denote the sum of the squares of the vertex degrees of a graph 

G.  In other words, for an (n, m)-graph G with degree sequence given by D(G) = 

(d1, d2, …, dn), we have DSS(G) =  
n

d j
1

2
. 

 

We now consider two degree sequences, both for (n, m)-graphs and define a useful 

concept, called degree sequence dominance. 



 

 

Definition:  Let D(G) = (d1, d2, …, dn) and D(H) = (d'1, d'2, …, d'n) denote the 

degree sequences of (n, m)-graphs G and H, respectively.  D(G) is said to 

dominate D(H) if 


j

i
i

j

i
i 'dd

11

for all  

j = 1, 2, …, n with strict inequality for at least one value of j. 

 

The importance of degree sequence dominance arises from its relation to the sum 

of the squares of the degrees of the vertices, as seen in the following proposition. 



 

 

Proposition 11: Let G and H be two (n, m)-graphs such that the degree sequence 

of G dominates the degree sequence of H.  Then DSS(G) > DSS(H). 

 

Proof:  Let D(G) = (d1, d2, …, dn) and D(H) = (d'1, d'2, …, d'n) denote the degree 

sequences of  

(n, m)-graphs G and H, respectively.  Since the degree sequence of G dominates 

that of H, there must be at least one index k, 1  k  n, such that dk > d‟k.   

Let k be the smallest index for which dk > d‟k and let dk = d‟k + d, with d > 0.   

 

Since the degree sequence is ordered, we have d‟k  d‟j for all j > k.  Since the two 

degree sequences add to the same sum, we must have d'dd
n

1ki
i

n

1ki
i 



.   

 

We alter the degree sequence of H by adding the value to d to d‟k, increasing 

DSS(H) by  

2dd‟k+ d
2
.  Decreasing d‟k+1 to balance the sum then decreases the new value of 

DSS(H) by  

d
2
 – 2dd‟k+1, yielding a net change of 2dd‟k+ 2dd‟k+1, which is a positive 

number.  Thus by modifying the degree sequence of H to make it look more like 

that of G, we have increased the value of DSS(H).  One can easily see that these 

changes to make the degree sequence of H identical to that of G continually 

increase DSS(H).  Thus we must have started with DSS(H) < DSS(G). 

 

A sparse graph is an (n, m)- graph for which m  n
2
/4, and a dense graph is an 

(n, m)-graph for which m > n
2
/4, where x is the largest integer not greater than 

the real number x.   

n
2
/4 = (n

2
/4) if and only if n is an even integer. 

 

For graphs G and H, let *H(G) denote the number of induced subgraphs of G 

which are isomorphic to H and #H(G) denote the number of (not necessarily 

induced) subgraphs of G which are isomorphic to H.  Thus #P3(G) and *P3(G) 

denote the number of subgraphs and the number of induced subgraphs, 

respectively, of G isomorphic to P3, the path on three vertices. #K3(G) denotes the 

number of subgraphs isomorphic to K3, the triangle.  Because all triangles as 

subgraphs are induced, #K3(G) = *K3(G); we use *K3(G) to denote the number of 

triangles in a graph G.  Any graph for which *K3(G) = 0 is said to be triangle-free 

or K3-free.  We shall see that bipartite graphs are K3-free. 

 

Recall that a bipartite graph is an (n, m)-graph G with the property that V(G) can 

be broken into two disjoint sets V1 and V2, such that a vertex in V1 is adjacent only 

to vertices in V2 and a vertex in V2 is adjacent only to vertices in V1.  We now 



 

 

prove one result of major importance to our work: that bipartite graphs do not 

contain a K3.  We do this by first proving the more general result and then applying 

an obvious definition. 

 

Theorem 12: A graph G is bipartite if and only if all of its cycles are even. 

 

Proof: This proof is quite important, so is quoted almost verbatim from Theorem 

1.3 in Distances in Graphs [R01].  If G is bipartite, then its vertex set V can be 

partitioned into two sets V1 and V2 so that every edge of G joins a vertex in V1 

with a vertex in V2.  Thus every cycle [of length k] v1, v2, …, vk, v1 in G necessarily 

has its oddly subscripted vertices in V1, say, and the others in V2, and so its length 

is even.  [Otherwise, we would have the edge (vk, v1) connecting two vertices in V1, 

contradicting our hypothesis.] 

 

For the converse, we assume without loss of generality that G is connected (for 

otherwise we can consider the components of G separately).  Take any vertex v1  

V(G) and let [vertex set] V1 consist of v1 and all vertices at even distance from v1, 

while [vertex set] V2 = V – V1.  Since all cycles of G are even, every edge of G 

joins a vertex of V1 with a vertex of V2.  For suppose there is an edge (u, v) joining 

two vertices of V1.  Then the union of geodesics [shortest paths] from v1 to v and 

from v1 to u together with the edge (u, v) contains an odd cycle, a contradiction. 

 

We now present the important result as a corollary to the above theorem. 

Corollary 13: A bipartite graph does not contain a K3 (triangle). 

Proof: We have just shown that a bipartite graph does not contain any cycle of odd 

length.  Specifically, it does not contain a C3 (a cycle on three vertices), which is 

isomorphic to a K3 (complete graph on three vertices). 

 

In terms that we shall use later, we have just shown that if G is a bipartite graph 

then  

*K3(G) = #K3(G) = 0. 

 

We now link sparse and dense graph to graphs containing triangles by use of a 

famous theorem due to Turan.  Turan‟s work is considered the first theorem in an 

important area of graph theory, called extremal graph theory, which we now 

discuss briefly. 

 

Extremal Graph Theory 

The study of extremal graphs is generally the study of the largest or smallest 

graphs that have certain properties.  The best reference on the topic is the book 

Extremal Graph Theory by Bollobas [R03], a book that is rare and hard to find.  



 

 

The book contains references to many of the original papers in the subject; 

unfortunately many of them were written in Hungarian and have yet to be 

translated. 

 

For these notes, we focus on extremal graph theory of complete subgraphs; that is 

subgraphs that are isomorphic to a complete graph Kn.  We quote from chapter VI 

of Bollobas [R03] to introduce the subject. 

 

Given a graph F1, what is ex(n; F1), the maximum number of edges of 

a graph of order n [having n vertices] not containing F1 as a subgraph. 

… [The] best known extremal result of graph theory [is] Turan‟s 

theorem.  This result, proved in 1940 and always considered to be the 

first extremal theorem, answers this question above in the case F1 = 

Kr. 

 

Turan‟s theorem is based on specific complete q-partite graphs, denoted Tq(n). 

Definition: Given natural numbers n and q, denote by Tq(n) the complete q-partite 

graph with n/q, (n + 1)/q, … (n + q – 1)/q vertices in each of the vertex sets.  

Note that Tq(n) is the unique complete q-partite graph of order n whose vertex sets 

have size as equal as possible.  For convenience, we number the vertex parts 

beginning with 0, so that vertex part k has size  

(n + k)/q, 0  k  (q – 1). 

 

It is a standard result that a q-partite graph of order n having n0, n1, .. nq-1 vertices 

in its vertex parts has at most 








2

n
 –  







1q

0

k

2

n
 edges.  Tq(n) is the unique q-partite 

graph of order n, denoted by tq(n).  Turan also proved in 1941 that every other 

graph of order n and size tr-1(n) contains a Kr as a subgraph. 

 

For this research the most important Turan graph will be T2(n), the complete 

bipartite graph with vertex parts of size n/2 and (n + 1)/2. 

 

Theorem 14:  Let r and n be natural numbers, r  2.  Then every graph of order n 

and size greater than tr-1(n) contains a Kr, a complete graph of order r.  

Furthermore, Tr-1(n) is the only graph of order n and size tr-1(n) that does not 

contain a Kr. 

Proof: See the proof of theorem 1.1 in chapter VI of reference [R03]. 

 

Of special interest to much research is the largest graph that contains no K3. 

Lemma 15: The largest graph with n vertices that contains no triangle is the 

complete bipartite graph Ka,b, with n = a + b and |a – b|  1. 



 

 

 

Proof:  See Theorem 4.1.2 in the book Pearls in Graph Theory [R02].  This is also 

a special case of Theorem 14, just above. 

 

Remark:  The complete bipartite graph Ka,b has m = ab edges.  If a > b, then we 

have two possibilities for graphs satisfying theorem 15: a = b and a = b + 1.  If a = 

b, then  

n = 2b and m = b
2
 = n

2
/4.  If a = b + 1, then n = 2b + 1 and m = b(b + 1) = b

2
 + 

b.  Also we have n
2
 = (2b + 1)

2
 = 4b

2
 + 4b + 1, so m = n

2
/4.  The graph Ka,b, 

as described above is the largest sparse graph and we conclude that all dense 

graphs must contain triangles. 

 

Corollary 16: If G is an acyclic graph, it must be a sparse graph. 

Proof:   If G is not a sparse graph, it is a dense graph that must contain a 

triangle or 

  K3  C3, which is a cycle.  Hence G is not acyclic. 

 

We add another interesting result that might be of use in later work. 

Theorem 17: If n  (r + 1) then every (n, m)-graph with m = tr-1(n) + 1 contains a 

Kr+1 from which an edge as been omitted. 

Proof:  See the proof of theorem 1.2 in Chapter VI of reference [R03]. 

 

Another Count of Subgraphs 

Another important count is S3(G), the number of induced three-vertex connected 

subgraphs of G.  P3, the path on three vertices, and K3, the triangle, are the only 

connected graphs on three vertices, so S3(G) = *P3(G) + *K3(G) for any graph G. 

 

An (n, m)-graph is said to be #P3-optimal if it maximizes #P3(G) for all G  (n, 

m), the set of all (n, m)-graphs.  *P3-optimal and S3-optimal graphs are those 

graphs which maximize the counts *P3(G) and S3(G) respectively. 

 

 
Figure 18: A Graph and Its 3-Vertex Induced Subgraphs 

 

In the example above, we see a (4, 4)-graph and the subgraphs induced on the three 

distinct three-vertex subsets of {1, 2, 3, 4}.  The subgraph <1, 2, 3> is a K3, which 

contains three non-induced P3‟s, one centered on each of its vertices.  The graph 



 

 

<1, 2, 4> is K1  K2, also called a K1K2.  The subgraph <2, 3, 4> is an induced P3. 

 

As was mentioned above, there are three non-induced P3‟s in the above graph – 

one centered at vertex 1, one centered at vertex 2, and one centered at vertex 3.  As 

a result we have one induced P3 and three non-induced P3‟s, for a total of four.  

Thus, for this graph we have *P3(G) = 1, *K3(G) = 1, S3(G) = 2, and #P3(G) = 4. 

 

Proposition 18: For any graph G, #P3(G) = *P3(G) + 3*K3(G). 

Proof:  Let u, v, and w be the vertices of a triangle in G.  There is a P3 centered on 

each of the vertices u, v, and w.  Since none of these is an induced P3, each triangle 

contributes 3 to the count #P3(G) but 0 to the count *P3(G).  The conclusion then 

follows by noting that each induced P3 contributes 1 to the count of #P3(G) and 1 to 

the count of *P3(G).  In order to drive this point home, let‟s take another look at 

figure 18, presented above, focusing on the triangle induced by vertices 1, 2, and 3.  

Note that none of the P3‟s defined on these 3 vertices is induced, as each lacks one 

edge incident only on vertices in the set {1, 2, 3}. 

 

 
Figure 19: A Graph and Some of Its 3-Vertex Subgraphs 
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WEIGHTED GRAPHS 

We now introduce the concept of a weighted graph – a graph in which there are 

weights associated with the edges.  These weights can represent distances, costs, 

capacities, or any other measure that is associated with an edge and that can be 

quantified as a real number.  For most weighted graphs, the weights are represented 

as non-negative integers, although negative edge weights appear to be used for 

some applications.  To this author‟s knowledge, no work has been done on graphs 

with edge weights represented as complex numbers. 

 

We begin with a formal definition of a weighted graph, and then move on to a more 

natural discussion of the concept in terms of drawings and adjacency matrices. 

 

Definition: A weighted graph G is a triple (V, E, W) in which V is a non-empty set 

of vertices, E  V  V is a set of edges (the graph can be directed or undirected), 

and W is a function from the edge set E into R, the set of real numbers.  For any 

edge e  E, w(e) is the weight of e.  In networks, the edge weights often represent 

the link transmission capacities. 

 

We shall immediately revert to the standard practice of representing all edge 

weights as non-negative integers, most commonly using only positive integers.  It 

can be proven that for most cases, this restriction does not present any difficulties.  

We shall begin with a simple undirected graph, in which all edges can be said to 

have a weight of one and then develop an example of the same graph with weighted 

edges.  This example is taken, almost verbatim, from an excellent textbook [R04] 

by Sara Baase and Alan Van Gelder. 

 

 1 2 3 4 5 6 7 

1 0 1 1 0 0 0 0 

2 1 0 1 1 0 0 0 

3 1 1 0 1 0 1 0 

4 0 1 1 0 0 1 0 

5 0 0 0 0 0 1 0 

6 0 0 1 1 1 0 1 

7 0 0 0 0 0 0 1 

 

 

 

 

Figure 20: An Undirected Graph and Its Adjacency Matrix 

 

We now add edge weights to this example, making it a weighted graph.  Note that 

the only change to the adjacency matrix representation is to replace the 1 by the 
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weight of the edge.  Suppose that A is the adjacency matrix of a graph.  We have 

two cases. 

 

Unweighted Graph Weighted Graph 

 AIJ = 0 if no edge  AIJ = 0 if no edge 

 AIJ = 1 if (I, J) is an edge  AIJ = weight(I, J) if (I, J) is an edge 

 

We now present a weighted graph that has the same underlying undirected graph as 

the example in the figure above.  Note that the adjacency matrix is different, it now 

has the weights. 

 

 

 1 2 3 4 5 6 7 

1 0 25 5 0 0 0 0 

2 25 0 10 14 0 0 0 

3 5 10 0 18 0 16 0 

4 0 14 18 0 0 32 0 

5 0 0 0 0 0 42 0 

6 0 0 16 32 42 0 11 

7 0 0 0 0 0 11 0 

 

 

 

Figure 21: A Weighted Graph and Its Adjacency Matrix. 

 

 
Figure 22: The Adjacency List Representation of the Same Weighted Graph 

Note that the vertices in the list are kept in sorted order.  This is a convention only 

and is not necessary.  Ordered lists are easier to search, but take more time for 

insertion. 

 

At this point we should note that the above adjacency matrix will cause some graph 

algorithms to malfunction.  The problem arises when the edges represent distances 
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or costs or some such quantity that one might want to minimize.  The problem, 

which does not occur in the adjacency list representation, is due to the fact that a 0 

is used to represent an edge that is not present.  Consider a silly algorithm 

attempting to develop a minimum cost Hamiltonian circuit of the above graph.  It 

might select 1  4  5  3  7  2  6  1 as the route with a total weight of 

0.  This is, of course, an impossible route as none of these edges exist. 

 

It is easy to see that the problem does not occur when one uses the adjacency list 

representation of the graph.  Edges that are not present simply do not have entries in 

the linked lists representing the open neighborhoods of each vertex.  The problem is 

avoided. 

 

It is also easy to see that the problem does not occur when one is using a graph to 

model some problem in which the edges represent flow capacities, available 

communication circuits, or some other measure to be maximized.  In that case an 

edge that does not exist is identical to an edge of zero capacity; neither can be used 

to solve the problem.   

 

When one is considering an adjacency matrix representation of a graph modeling a 

problem for which sums of edge weights are to be minimized, it is necessary to 

place a large value in the matrix elements that indicate non-existent edges between 

distinct vertices.  Note that almost all algorithms will detect that a diagonal element 

A[K][K] of a matrix is not to be used as the graph contains no loops, so only the 

entries for non-existent edges must be adjusted. 

 

Many books suggest placing  as an element in the adjacency matrix to represent 

the weight for the non-existent edges.  This is great for drawings, but presents 

problems in the application of an algorithm, because most computers lack a 

consistent representation for .  The approach commonly suggested is to take a very 

large number and use that.  Here is another suggestion that will work for most 

algorithms. 

 1) Beginning with the adjacency matrix having 0‟s represent each non-existent 

edge, 

  sum all the edge weights.  The sum is twice the total of the edge weights, as 

every 

  edge is summed twice. 

 2) Multiply that number by two and use that value to represent non-existent 

edges. 

In the above example, the sum of the values of the adjacency matrix is 346, 

indicating a total edge weight of 173.  We double the value of 346 to get 692 and 

use either that value or any larger value to represent a non-existent edge.  The use of 

this number is based on the observation that no path through the graph will have a 
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total distance greater than the sum of all the weights of all the edges, so here we use 

a number four times as big to keep the algorithms from picking any of these non-

existent edges.  The array below is the adjacency matrix using this approach. 

 

 0 25 5 692 692 692 692 

 25 0 10 14 692 692 692 

 5 10 0 18 692 16 692 

 692 14 18 0 692 32 692 

 692 692 692 692 0 42 692 

 692 692 16 32 42 0 11 

 692 692 692 692 692 11 0 

Figure 23: The Adjusted Adjacency Matrix 

 

 

 


